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A Generalization of the TSD Network-Analyzer
Calibration Procedure, Covering n-Port

Scattering-Parameter Measurements,
Affected by Leakage Errors

ROSS A. SPECIALE

Abstract—The basic philosophy of the through-short-delay (TSD)

calibration procedure for tw~port automated network analyzers has

been extended to n-port scattering-parameter measurements, while

also accounting for the errors due to possible signal leakage between
all port pairs.

The system errors are represented by the scattering response of a
2n-port virtual error network, having n ports conneeted to the device

under test and n ports connected to an ideal error-free multiport
network analyzer.

The (2n)2 T-parameters of the error network are explicitly

expressed in blocks of nz at a time, as matricial functions of the 3n2
S-parameters of three n-port standards, sequentially replacing the

device under test during system calibration.
The possibility y has also been investigated of correcting the errors

due to repeatable measurement-port mismatch changes, typical of
switching scattering-parameter test sets. This capability has been

introduced and tested in the classical two-port TSD calibration

algorithm, by means of a minor modification. and data postproces-

sing, applied after the removal of conventional errors.

I. INTRODUCTION

EVER SINCE the introduction of automated microwave

instrumentation for the characterization of microwave

components and networks through scattering-parameter

measurements, the need was recognized for automated

system-calibration procedures. These were expected to be

capable of providing a representation of the repeatable

system errors, usable for correcting uncalibrated

measurements.

A large variety of error models and calibration procedures

has been proposed to date, all differing in degree of complex-

ity and effectiveness [1]–[18]. A common feature of all the

proposed error models is the attempt at representing the

repeatable system errors by means of the scattering response

of a virtual error network, assumed to interface the device

under test to an ideal, error-free network-analyzer system.
The various proposed error models differ, however, in

the assumed topological configuration of the specific error

network and in the number of independent complex par-

ameters required for its full characterization.

The removal of the computed measurement errors from

uncalibrated measurements must be performed through a

parameter transformation equivalent to removing (or

“stripping”) the virtual error network from the measure-

ment interface. A common feature of all proposed calibra-
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tion procedures is the reliance upon simple, idealized

standards, for which the scattering response is assumed as

theoretically postulated. The various proposed procedures

differ, however, in the number, specific nature, and com-

plexity of the used standards and in the types of measure-

ments to be performed upon them.

Among the conflicting requirements to be satisfied by any

possible standard, one which has been particularly neglected

is the physical possibility of direct substitution to the

unknown network, at the same interfaces where this is to be

characterized.

The basic assumption of all proposed methods is the

assumed independence and invariance of the error-model

configuration and parameter values upon the nature and

response of the unknown network to be measured. It is

generally accepted to be true as long as the measurement

system is time-invariant during calibration and actual

measurements.

All error models and calibration procedures proposed to

date consider either one-port or two-port measurements. It

is generally assumed that n-port networks may be charac-

terized by repetitive reduced measurements, performed with

all but two ports closed upon “known” terminations. This is,

however, a time-consuming proposition and at least one

three-port network analyzer has been built and used to

characterize transistor chips. More ports may be needed for

characterizing microwave IC’S and supercomponents.

The most common single-port error model, used in

reflection measurements, is a virtual error-two-port,

assumed to be inserted between the single-measurement

port of an ideal error-free reflectometer and the unknown

reflection to be measured. This model requires the

specification of three independent complex parameters at
each frequency for a complete description of its effects on

reflection measurements. These parameters are frequently

identified with the entries SI ~,Sz2 of the main diagonal and

the product Slz S2 ~ of the other two entries of the 2 x 2

error-two-port scattering matrix. It is known that at least

three physical-reflection standards and three calibration

measurements are required to determine these parameters.

Occasionally, however, more than three calibration mea-

surements are performed to overcome an expected un-

certain y of a specific standard (sliding termination) or to

introduce redundancy (circle fitting). A fairly common two-

port error model is the simple mirror duplication of the just-

mentioned one-port model, including error-two-ports on
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the outer sides of the two measurement-port interfaces

where the two-port unknown networks are connected for

measurement. This model is defined, of course, by six inde-

pendent complex parameters, frequently identified as the

entries SI ~,S2z and the products S12S2 ~ of the two error-

two-ports. This model requires, therefore, the measurement

of at least six complex quantities at each frequency for full

specification. Many of the proposed two-port calibration

procedures, using this two-error-two-port model, prescribe,

however, the use of many more standards and the acquisi-

tion of many more calibration data than the minimum

strictly required. This redundancy of calibration standards

and measurements has been so far introduced mainly to

simplify the generally rather sophisticated mathematical

manipulations needed to compute the error-network par-

ameters from the calibration data.

These mathematical operations frequently involve the

solution of sets of simultaneous, nonlinear complex equa-

tions which, with few fortunate exceptions, require, in

general, lengthy numerical iterative processes. These math-

ematical complexities have led many authors to introduce,

besides the just-mentioned redundancy of calibration stand-

ards and measurements, a variety of arbitrary assumptions

upon the nature and size of the errors as expedients for

simplifying the solution of the calibration equations and

circumventing the need for slow numerical iterations. While

these practices have possibly been successful to this extent,

they have, however, introduced an unnecessary burden on

the acquisition of the calibration data and restricted the

capabilities of error removal in terms of error types and size.

They also introduced problems of mutual consistency

among redundant calibration data.

The most common arbitrary, simplifying assumptions

intrinsic to many of the known calibration procedures are:

1) negligible measurement-port mismatch for at least one of

the ports; 2) negligible response distortion due to the

external interconnecting networks (cables, hinged arms,

adaptors, transitions, and the like); and 3) negligible

measurement-signal leakage, bypassing the unknown

network.

The first two assumptions, widely the most common,

consider at least one of the measurement-ports as having

close-to-nominal impedance, usually 50-f2 real, and thus

limit the effectiveness of the calibration to the partial

removal of only the internal system errors, up to front-panel

interfaces. These assumptions also set limits upon the

acceptable size of the errors to be correeted.

The recentIy introduced Through-Short-Delay (TSD)

calibration procedure [19], applies to the previously men-

tioned two-error-two-port error model, but, in contrast to

the previously known methods, eliminates redundancies

and arbitrary assumptions, with the exception of zero leak-
age, while providing an explieit, noniterative solution of the

calibration equations. The TSD method reduces the total

number of calibration standards to three, which is the

minimum number of standards required to completely

speeify the assumed model. All TSD standardk are simple

two-port devices having no moving parts, which can always

be designed to physically fit in place to substitute

the unknown network directly at its defining interfaces. This

possibility automatically includes any eventual intercon-

necting network within the measurement system being

calibrated. In particular, the TSD procedure does not

assume negligible measurement-port mismatch nor negli-

gible response distortion by the external RF interfacing

networks. As a consequence, even rather’ sophisticated

interfacing networks may be included in the measurement

circuit if needed. Wafer and microwave IC probes are

interesting examplei.

The delivered explicit solution of the TSD calibration

equations provides closed-form expressions of the scattering

parameters of the error-two-ports, which may be directly

used in an explicit parameter transformation, to correct

uncalibrated measurements. This procedure has been

proved capable of correcting for large internal and external

repeatable system errors to within the resolution and stabi-

lity of the used system hardware [21], [22]. It also makes

measurements possible at nonstandard impedance levels

and upon non-TEM wave modes.

Because of the original choice of its error model, however,

the TSD method is unable to account for errors due to signal

leakage, bypassing the unknown, nor is it applicable to

measurements performed upon multiport microwave

networks. Recent theoretical work [23] has extended Ihe

capabilities of the TSD method to multiport S-parameter

measurements, while also accounting for the errors due to all

possible signal-leakage paths, bypassing the unknown

network between any of its port pairs and any pairs of

measurement-system ports.

No theoretical limitation was found upon the relative

amount of signal leakage that can be corrected for, although

increasing system resolution is expected to be required in

measurement situations affected by substantial leakage.

The basic advantages of the original TSD procedure,

represented by the fast execution of the explicit calibration

algorithm and the ability to handle large errors, have been

retained in” the new, generalized explicit Super-TSD n-port

calibration algorithm.

Using rather unconventional matrix algebra operators, it

has been possible to express the new generalized explicit

solution in a concise symbolism, directly translatable in

standard programming language.

It has also been proved that the obtained matricial
solution retains its validity in the conventional cases of n = 1.

(single-port reflectometer) and n = 2 (conventional two-
port network analyzer). In particular, assuming zero leakage

in the n = 2 case, the Super-TSD matricial solution becomes

coincident with the scalar solution already obtained for

TSD.

In conclusion, it appears that the new Super-TSD algor-
ithm includes, as particular cases, all the reflectometer and

network-analyzer calibration procedures proposed to date,

including those attempting to account for leakage errors. A

particular class of network-analyzer errors which, however
widely recognized, is not yet known to be corrected by any

existing calibration procedure, arises from the need for
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rearranging the configuration of the internal or external

microwave measurement-circuits of a network analyzer in

order to perform a full two-port measurement of all four

scattering parameters of an unknown network. This

measurement-circuit rearrangement is obtained, partially

‘m totally, by means of coaxial microwave switches.

S-parameter test sets are, accordingly, classified as “non-

switching” or “switching,” depending on whether the un-

k~own must be manually disconnected and reconnected in

reverse insertion for a full four-parameter measurement.

These circuit manipulations are, in particular, known to

affect the measurement-port mismatch, as seen from the
,, unknown at either interface.

Regardless of the circuit reconfiguration being partly or

totally obtained by means of microwave switches, the basic

assumption of a time-invariant system, common to all

known calibration and error-correction procedures, is

invalidated. It then becomes interesting to ascertain wheth-
.--, er a calibration procedure that implies cycling the mea-

surement-circuit configuration through exactly the same

steps for all the used standards and for the unknowns to be

measured, could generate a global error-model representa-

tion compounding all the errors due to repeatable

measurement-port mismatch chang~s consequent to circuit

,. reconfiguration. In a first attempt at solving this problem,

the capability of the two-port TSD method to correct for

these errors has been investigated theoretically and numer-

ically. The TSD method was selected because of the invar-

iance of the circuit reconfiguration cycle during system

calibration and measurements.
Simulated calibration data have been obtained by means

of a parameter transformation, providing the erroneous

scattering-parameter readings that would be generated by a

network analyzer affected only by repeatable port-mismatch

changes. The input data required by this transformation are..
the true, standard S-parameters of the considered unknown

(or standard) and the assumed complex measurement-port

impedances of the test set in its four configurations.

,. As a result of this analysis and investigation, a minor

modification has been introduced in the TSD calibration

algorithm to allow for a peculiar “nonreciprocity inconsis-

tency” introduced by the port-mismatch changes.

It has also been concluded that the TSD error-model,

which is common to many other previously known methods,

is, in general, not suited to fully represent this type of error. A,.. -
method has, however, been developed for postprocessing the
scattering-parameter data obtained after the stripping of the

error-two-ports from the uncalibrated measurements and

removing residual switching errors not included in the

model.

A similar investigation is being undertaken for the new

multiport Super-TSD method in consideration of the fact

that switching is bound to become mandatory if multiport

nieasurements are to attain any acceptable degree of

practicality.

An important consideration is that modern solid-state
.“

microwave switches may be expected to provide the

required repeatability y of response to much tighter tolerances
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Fig. 1. The Super-TSD error model is a 2rr-port virtual error network

interfacing the unknown n-port to an ideal ;-port network analyzer.

than present-day electromechanical models and that repeat-

ability is all that is needed if the method used does not
assume any limitations upon this response.

II. SUPER-TSD

A. The n-Port Error Model

As the orighal TSD method, Super-TSD relies on a

global representation of all system errors by means of the

scattering response of a virtual, linear error-network inter-

facing the device under test to an ideal error-free multiport

network-analyzer system. The Super-TSD error model,

represented in Fig. 1, consists of a single 2n-port EN,

embedding the unknown n-port network X. The virtual

error network EN has the n-ports 1,2,”””, n connected to the

ideal multiport network analyzer system and the n-ports

n + 1, n + 2, .-., 2iz connected to the unknown network.

These two groups of ports define the error-network input

interface, where multiport scattering-parameter measure-

ments are performed, and the inaccessible error-network

output interface, where the true scattering matrix Sx of the

unknown is defined.

As no assumption is made upon the behavior of the error
network EN, aside from linearity, a maximum of (2n)2

independent complex parameters are required at each

frequency to quantitatively describe it in matrix form.

An ideal ordered correspondence may be assumed be-

tween the ports 1,2, “”., n of the input interface and those
n+l, n+ 2,”””, 2n of the output interface. Under this

assumption, any of then signal paths between an input port

m and the corresponding output port m + n may be con-

sidered a “direct” path, while any other path may be

considered to represent signal leakage.
It is easy to see that there are 2n(rr – 1) leakage paths out

of a total of n(2n – 1). As a consequence, 4n(n – 1) of the

(2n)2 independent complex parameters, describing the error

network at. any frequency, represent signal leakage.

In zero-leakage situations only direct-signal paths will

exist and the 2n-port error network EN may be sliced

horizontally inn two-ports, directly connecting correspond-
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ing input and output ports. In this case, any matrix represen-

tation of EN will contain only 4n nonzero entries and

4n(n – 1) zero’s.

B. The n-Port Calibration Standards

In the new Super-TSD calibration method no specific

assumption is made a priori upon the configuration and

nature of the calibration standards.

Three basic requirements are, however, aswumed to be

satisfied by any of the used standards.

a) All standards must be electrically connectable to phys-

ically replace the unknown X at its definition interface

(ports n+l, n+2, ””, 2n), using the same type of electrical

connection.

b) The scattering matrix S~i of standard number i must be

theoretically postulated or otherwise known from a primary

measurement.

c) At least one of the standards must contain a fully

known impedance-reference component.

Requirement a) implies that all the used standards be

n ports as the unknown network X to be measured. Require-

ment b) restricts the types of components usable in stand-

ards to a few extremely simple circuit elements for which
the relevant electrical parameters may be theoretically

postulated or determined by primary two-port measure-

ments. Typical elements are short circuits, open circuits,

segments of beadless coaxial air line or waveguide

(Throughs and Delays) and, to a lesser extent, calibrated

resistors.

It is believed that a large variety of n-port calibration

standards may be obtained by using different combinations

of Throughs, Shorts, and Delays connected in various topo-

logical configurations among the n ports of the various

standards. Also the same physical object may be reused as m
different calibration standards if it is physically connectable

in m of the n ! possible ways, while being every time defined

by a different n x n scattering matrix S~L.

C. The Basic Super-TSD Calibration Equations

Following the philosophy of the Super-TSD method,

system calibration is obtained by collecting at each measure-

ment frequency the full n x n complex matrix of erroneous

S-parameter readings SMi, while having standard number i
with known S-matrix Ssi electrically substituted for the

unknown X.
The most convenient representation of the error-network

scattering response is given by its complex 2n x 2n
T-parameter matrix (Fig. 1). It can be proved (see Appen-

dix I) that the relation between the erroneous measured

scattering matrix SMi, defined at the error-network input

interface, and the corresponding Ssi matrix is given by

SM1 = (Tl . Ssi + Tz) “ (T3 “ SS~ + ‘G-l> i=l,2, ”””, k
(1)

where Tl, “.. , Tq are the four n x n quadrants of the 2n x 2n
T-matrix T. This is a matrieial bilinear transformation of the

postulated n x n matrix SSi into then x n measured matrix

SMi. This transformation describes the n-port reflection at

the input of the standard as seen through the 2n-port linear

embedding.

For n = 1, the error network EN reduces to a simple

two-port, the matrices SMi and Ssi become complex scalars

with the physical meaning of reflection coefficients, and the

T-matrix T becomes 2 x 2 complex.

It is easy to recognize that (1) then reduces to the

well-known scalar bilinear transformation of the reflection

of a given load impedance as seen through a linear two-port.

The Super-TSD calibration problem consists of comput-

ing the entries of the quadrants Tl, “. o, TAof the T-matfix T

from a sufficient number k of matrix pairs s~li$si.

D. The Explicit Matricial Solution

It is easy to show that any of the k n x n matricial

calibration equations (1) may be rewritten as

T1. Ssi+T2– sMi” T3”ssi–sMi” T

= lo\, i=l,2, . . ..k. (2)

Each of these equations could be developed to a set of nz
linear homogeneous equations in the entries of the error-

network T-matrix. As there are (2n)2 elements in the matrix,

no more than four sets and four n-port standards are strictly

required to solve the problem.

This type of solution is, however, not very attractive, as

the formal development of then x n matrix in the left-hand

member of (2), for each standard, is already a rather elab-

orate operation for n = 2 and would become impractically

complicated for n larger than 2. Besides, this type of solu-

tion would lack generality.

It is therefore interesting to investigate the possibility of

solving the set (2) in matricial form by expressing the

quadrants Tl, “.”, T4 as matricial functions of the matrices

SMi and Ssi.

In these respects, it is interesting to notice that the set of k
matricial equations (2) looks like a linear set of n x n
homogeneous equations in the four unknown quadrants

T1>””, T4.
‘Attempts at solving this set by applying the known

methods for the solution of sets of scalar linear equations

would fail, however, because of the noncommutativity of

matrix products and the appearance of the quadrant T3 in

the “sandwich” matrix product SMi . T3 Ssi.
It is, however, possible to break the sandwich product by

applying a transformation that uses two matrix operators

known in multilineal algebra.

These are the Kroneker tensor product A @ B of two

matrices A and B [24, pp. 235–236] and the stacking

operator S(A) of a matrix A [24, p. 245, problem 16]. Applied

to n x n matrices A and B, the Kroneker product generates

an nz x n2 product matrix, while the stacking operator
transforms an n x n matrix A into the nz-dimensional

column vector S@) by sequentially stacking the columns of
A in vertical order.

Alternatively, a “reshuffle” or “row-stacking” operator

KS(A) = S(A ~) may be used which is equal to the stacking of

the transpose A ~ of the matrix A. RS(A) is therefore an
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n2-dimensional column vector, sequentially containing, in

vertical order, the rows of A rotated 9W clockwise.

The breaking of the sandwich matrix product A . C “ B

may then be obtained in either of the two following forms:

s(A”c” B)=(B’@A)” s(c)

or

RS(A “ c “ 1?)= (A@ l?’) “ Rs(c).

Using the second form and completing with the n x n unit

matrix 1 the nonsandwich products of (2), this may be

rewritten as

(1@ S:i) . RS(T1) + RS(T2) - (sM, 8s:) . Rs(z)

- (sMi @ 1) . RS(T4) = lo/ (2’)

where i=l,2, ””., k.

The advantage of (2’) is that all its terms are matrix-by-

vector products of the same order n2, and thus these

equations form a set of linear, homogeneous matricial

equations in the four column vectors RS(T,), i = 1,2, . ...4.

Provided at least three n-port standards are measured

during system calibration (k= 3), the following explicit

vectorial solution may be obtained from the set (2’) by

Gaussian elimination (see Appendix II):

RS(7° ) = Arbitrary, nonzero complex column vector of

order n2 (3)

RS(T2) = {(sM, @s;l)(B-’A – D-lC)-’(B-’E – D-lF)

+ (SM1 @I)(A-lB – C-lD)-l(A-lE – C-lF)

- (1@ s:,)} . RS(T,) (4)

RS(T3) = (B-lA – D-lC)-’ “ (B-lE – D-lF) “ RS(T1)

(5)

RS(T4) = (A-lB – C-lD)-l - (A-lE – C-lF) . RS(T1)

(6)

where the auxiliary n2 x nz matrices ,4, B, . . . . E, F are

defined by

A = (sMl @ S;l) – (SM2 @ S;2) (7)

B = (sMl @ 1) – (SM2 @ 1) (8)

c = (SM1 @ s;,) – (sA,f. 8 s:,) (9)

D = (S~l @1) – (S~3 @1) (lo)

E = (I @S:l) – (1 @S:2) (11)

F = (z @s;l) – (I@sQ). (12)

As indicated by (3)-(6), it would appear that this explicit

matricial solution implies some degree of arbitrariness for

the quadrant T1 of the error-network T-matrix. Besides, the

choice of T1 as an independent matricial variable is also

arbitrary, as the Gaussian elimination process could be

conducted in such a way as to leave any of the four

quadrants arbitrary, while expressing the other three as

matricial functions thereof.

This is, in a way, consistent with the homogeneous

character of the set (2). The existence of restrictions to the

completely arbitrary choice of the independent quadrant is,

however, suspected and expected. First, it is quite evident

that it would be meaningless to choose a zero matrix.

Second, it would not be useful to choose the quadrant such

that the total T-matrix T of the error network is singular

(see SectionII-D). Also, within the limits of the arbitrariness,

(1) should be invariant to the choice. In these respects, if T,
is the quadrant chosen to be independent and it commutes

with all the S~i, then

SMi = (TIS~i + T2) ~(~S~i + T4)-1

= (S., + T,T;’) “ (T, T;’S~, + T4T;1)-1

so that only the three matrices T2 T; 1, T3 T; 1,and T4 T; 1
would be required to specify the matricial bilinear transfor-

mation (l).

E. The n-Port Deembedment Formula

Once the 2n x 2n T-matrix T of the error network has

been computed and assuming that it is nonsingular, the

removal of all system calibration errors from the measured

n x n scattering parameter matrix SM of an unknown n-port

X (Fig. 1) maybe performed by computing the “corrected”
n x n scattering-parameter matrix Sx as (see Appendix III):

s,= (R1 “ s&f+ R2)(R3 “ s~ + R.)-’

= {(T1 - T2T~1~)-1 “ S~ + (T, – T4T;1T1)-1}

~{(T2 - T1 T;lTz)- 1 “ S~+ (Tz– T3T~1T2)-1)”1

(13)

where R ~, “””, R4 are the quadrants of the inverse T-1 of the

T-matrix T of the error network EN.
The second form of the right-hand member of (13) is only

usable if the quadrants of T are individually nonsingular, a

condition that may not be satisfied even if the total matrix T
is nonsingular. If the ~ are nonsingular, however, four n x n

matrices must be inverted instead of a big 2n x 2n matrix, a

circumstance that may be advantageous to numerical inver-

sion in relation to rounding off errors. Also the second form

of (13) greatly simplifies if the quadrants Tl, .”., T4 of T
mutually commute, in which case

Sx = (T4 . S~ – T2)(– T, “ S~ + T1)-l. (13’)

Being equivalent to (l), the n-port deembedment formula

(13) should be invariant to the choice of the quadrant T,
under the same arbitrariness restrictions.

F. Special Cases

It is interesting to consider the two Super-TSD special

cases for n = 1 and n = 2 with zero leakage.

For n = 1, which is the classical case of the single-port

microwave reflectometer, the error network EN reduces to a
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simple two-port with T-matrix: T1 = T1~, Tz = T1z,
!

T3 = Tzl, and Tz = Tzz.
T1 = -w-----------

0 ~ Tll,/DET(T~)
The measured and postulated scattering matrices SMi and

Ssi become complex scalar reflection coefficients
– DET (S~)/Szl~ I o’

. _________ -–__ L__––-_.

o \ – DET (sB)/S121

S~i = rmi SSi = r~i, i=l,2,3

)
-----; (17)

I
and the Kroneker products reduce to simple scalar products Tz = -~lw------------

0 1– T,l,/DET (TB)
S~i Q Sfi = r~i “ r,i S~i @ I = r.i I @ S~i = r~i.

_ sllA/s21A i o

Equation (1) then becomes the well-known scalar bilinear
— ––––––––+–––-––-

0 f s22B/s12B

transformation of the single-port microwave reflectometer

[15, p. 399, eq. (l)]

Tll ~17~i+ T12 = S1l – DET (S) “ r,i
r.i = T

21 “ r.i + Tzz l–S22”r,i ‘

i = 1, 2, 3 (l’)

T21A ‘ oT3 =

‘–0-– ~= T;2;75E777;)

‘s22/4/s2~,4 1 0
. ___. ___––_l__–– _____

o / —S11BIS12B

(18)

(19)

I

where Sll, S22, and DET (S) = SIIS22 — S12S21 are T4 = -~2%----------
S-parameters and the determinant of the scattering matrix O ! Tz2B/DET (TB)

of the error two-port. l/Sz~A~ O
It is easy to show that, while the auxiliary matrices ,4, “.”,

——
o ~ 1/S~zE

(20)

F become simple complex scalars, the Super-TSD solution

(3}(6) provides the well-known microwave reflectometer where the parameters with indices ijxl belong to the error-

calibration procedure relying on three reflection standards two-port A, and those with indices ijB belong to the

rml rm2 r,~(r,l – r,2) – rml rm~ r.2(r,1 – r,~) + rm2rm3 r,l(r.2 – r,~) T
RS(TZ) = T12 = –

(rml - rm,)(rmlr,l - rm,r,2) - (rml - rm2)(rm1r,1 - rm, r.,) ‘1
(14)

RS(T3) = T21 =
(rml - rm,)(r,l - r,2) - (rml - rm2)(r,1 - r.,)

(rml - rm3)(rm1r.1 - rm2r,2) - (rml - rm2)(rm1r,i - rm3r,3) ’11
(15)

RS(T4) = Tzz =
(r,l – r.3)(rm1r.1 – rm2r.2) – (r,l – r.2)(rm1r.1 – rm3r.3) T (16)

(rml - rm3)(rm1r.1 - rm,r.2) - (rml - rm2)(rm1r.1 - rmm 11”

For n = 2 and zero leakage, the error network EN, sliced

horizontally between the two pairs of corresponding ports, error-two-port ‘. ‘lsO

reduces to the TSD two-error-two-port model. It is then DET (TA) = S12~/S21A DET (TE) = S~Z~/SZ~B
easy to prove that the quadrants T1, .””, T4 of the T-matrix

T maybe related to the T- and S-matrices of the two-error are the determinants of the respective T-matrices.

two-ports as follows: On the basis of these expressions, (l), written for the

unknown network X as in (1.11) of Appendix I, becomes

equivalent to the TSD embedding equations

s ~ = S1lA – Sllx DET (SA) – S11B[S11AS2ZX – DET (S’A) DET (Sx)]
11

1 – S,~~L$ZZA – S,,&z~ – S~z,4 DET (Sx)]
(21)

(22)

(23)

s ~ =(1 - S,,xSzzA)S~z~ - [S,2X - S,,A DET (Sx)] DET (sB)
22

1 – s~,~szzA – s,~B[szz~ – szz,4 DET (Sx)]
(24)
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which are, in turn, equivalent to the cascaded T-matrix erratic component in the circuit response for all four of the

product TM = TA “ Tx “ T~. required situations. Electromechanical microwave switches

At the same time, (13), which assumes the form (13’) have traditionally been considered with much reservation in

because of the diagonal character of the quadrants Tl, “”., these respects.

T4, becomes equivalent to the TSD deembedment equations

s
SII,[SII.SZ2M – DET (SM)] + (SIIM – S1l.) DET (S~)

llX = SII,[S22M DET (S,J – SZz~ DET (S~)] + [S11A4S22.4 – DET (SA)IJJET(SB) (25)

s~z~ =
–S12M ‘ s2~,4 “ S21B

s, IB[S22J4 DET (s.,i) – S2JA DET (S~)] + [S11MS2ZA– DET (S.)] DET (SB)
(26)

s
–s ~~~ “ s~2A “ S12B

21X = s~~B[sz~~ DET (SJ – S22,4 DET (SM)] + [S11MSZ2A– DET (sxi)] DET (SB) (27)

S22M DET (S/J – sz~. DET (Sjw) + [SIIMSZ2A – DET (s,4)]szzB
s–

22X– S1,B[S22M DET (S.) – S22. DET (S~)] + [S,, A4S,M – DET (s.)] DET (SB) (28)

which are, in turn, equivalent to the cascaded T-matrix

T-’ [19, p. 72, eq. (19)].product Tx = T; 1. TM . B

The element of arbitrary choice in the quadrant Tl, as
expressed by (17), is introduced by the possibility y of multi-

plying SZ1. and S12~ by an arbitrary complex scalar,

provided Slz~ and S2 ~~ are at the same time divided by the
same scalar, This simultaneous scaling of the Sij (i #j)

maintains the values of the products S12~ S2 ~~and S~ZBSZ ~B

unchanged (see Appendix V) and does not invalidate the

obtained error two-port solution as a representation of

the relationship between the measured and the true pa-

rameter matrices SM and Sx.

It is interesting to notice that the diagonal character of the

matrix quadrants Tl, “””, T4 is a consequence of the zero-

leakage assumption. In the absence of leakage, the quad-

rants of the T-matrix T are always diagonal matrices for

any number of ports n >1. As a consequence they mutually

commute and the n-port deembedment formula (13) always

reduces to the much simpler form (13’).

A formal development of the Super-TSD solution (3)-(6)

for n = 2 and nonzero leakage is being worked out at this

writing, in order to confirm as a special case the explicit TSD

algorithm and study by inspection the sensitivities of the
Super-TSD solution to tolerances upon the standards and

numerical rounding off errors. In conclusion, it appears that

by appropriate choice of the specific standards used, the

Super-TSD calibration procedure maybe shown to include,

as particular cases, all the known microwave reflectometer

and two-port network-analyzer calibration procedures; in
particular, all those attempting to correct for leakage errors

by inclusion of one or two leakage paths in the error model.

III. SWITCHING ERRORS

A. Types and Origins of Switching Errors

It is widely recognized that the rearrangement of the

microwave measurement-circuit configuration required for

a full two-port measurement introduces two classes of

measurement errors.

First, regardless of the circuit rearrangement being ob-

tained manually or by means of microwave switches, the
repetitive making and breaking of contacts introduces an

This class of errors obviously cannot be corrected by any

calibration procedure, due to their erratic statistical nature.

There is hope, however, that technological progress, in

particular the development of modern solid-state switches,

may reduce the proportions of this nonrepeatability of

response.

Even taking this for granted, however, another class of

repeatable, systematic errors will remain, which is directly

related to the cyclic reconfiguration of the measurement

circuit.

These errors arise first from the practical impossibility of

designing a test set to have measurement ports of perfectly

nominal impedance at every frequency, and, second, from

the dependence of the measurement-port mismatch, at any

given frequency, upon the specific measurement-circuit
configuration being used.

Practical systems will thus always be affected by varying

degrees of port mismatch at different frequencies and, on top

of that, the port mismatch at any given frequency will change

cyclically following the circuit-configuration switching. In

the light of this conclusion, the need for external calibration

standards, including at least one traceable impedance-

reference component, becomes mandatory. The use of seg-

ments of beadless coaxial air line or waveguide for this

purpose is gaining widespread consensus.

In a completely general situation, the two measurement

ports of a switching test set will assume four pairs of

uncorrelated complex impedance values during a complete
two-port measurement cycle. It is thus logical to assume

that, in the absence of any other type of error, the test set

readings would correspond to the scattering parameters of

the unknown network X, normalized to the specific complex

port impedances the set has during the measurement of each
individual parameter.

Although the concept of normalization with respect to

complex port impedances is known [25], [26], an unusual

situation arises here, because of each scattering matrix

element being normalized to a different pair of complex port

impedances. We believe such a scattering matrix deserves

the qualification “supergenerahzed.”
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TABLE I

LABELING OF MEASUREMENT—PORT IMPEDANCES IN A
U= I+ DET (S) (34)

SWITCHING SCATTERING-PARAMETER TEST !lET Y= sl~ – s~~ (35)
—

Measurement Impedance Port 1 Impedance Port 2 J“=s~~+s~* (36)

with

2111 I 2211

while the 16 coefficients C~ij are expressed by

S22 I 2122 ! 2222

B. Simulation of Repeatable Mismatch Changes

The theoretical simulation and modeling of the repeatable

switching errors due to consistently cyclic measurement-

port mismatch changes is the only reliable basis for a study

of the properties of these errors and for an accurate analysis

of the capability of any calibration procedure to correet

them.

A numerical error simulation also establishes a quantita-

tive correlation between the errors and the port mismatches

that cause them. It would be impossible to accomplish all

this experimentally. The fundamental tool of such a simula-

tion must be a parameter transformation providing the

supergeneralized scattering-parameter matrix S~ of a given

network X as function of the true (postulated) standard

scattering matrix Sx (normalized to 50-Q real) and of the

nonnominal complex port impedances the test set is

assumed to have during the various steps of a measurement

cycle.

A two-port S to S* transformation has been obtained (see

Appendix IV) which contains as parameters the four pairs of

complex port impedances Z~ij of the test set (n = port

number, ij = indices of the scattering parameter being

measured. See Table I). This S to S* transformation is given

by

where

X = L-– DET (S) (33)

C“’=EH2

(37)

(38)

C2’=E+E (39)

/z7zc3ij=&- ‘o
(40)

+ Jzlijz2ij“i’=& ‘o
(41)

2 — C:ij — C;ij = 4.C~ij – C~ij – (42)

In this transformation, the ai and bi waves at the two ports

are assumed to be the traveling waves, as defined by

Kurokawa in [26, p. 201, eq. (43)]. This assumption is

motivated by the fact that it is not clear to us how a network

analyzer could be sensitive to Youla’s power waves [25]. In

any case, even assuming the system to be sensitive to power

waves, the form of the transformation (29)–(32) would be the

same, only the definition of the C~ij coefficients would

change (see Appendix IV).

C. Properties of the Repeatable Switching Errors

A number of characteristic properties of these port-

mismatch switching errors may be predicted by inspection

of the given S to S* transformation. First, it is easy to see that

a matched two-port will, in general, appear to be mis-

matched, unless by coincidence C ~~~ = C‘ 11 == C 122 =

C322 = O. Second, a reciprocal two-port with the ratio

S12/S2 ~ = 1 will appear to be nonreciprocal because of a

ratio S~2/S~l # 1, which, in turn, depends on both the port

impedances Znij and the intrinsic response of the two port

itself, as characterized by its standard S-parameters. In par-

ticular, different lengths of transmission line with nominal

impedance will show different amounts of apparent non-

reciprocity, as measured by the apparent nonreciprocity

ratio S~2 /S~l.

Also, all these properties are quantitatively dependent

upon the direction of insertion of the measured two-port

with respect to the system’s measurement ports, being either

“forward” (Port 1 to Port 1, Port 2 to Port 2) or “reverse”

(Port 1 to Port 2 and Port 2 to Port 1). This is true in the
sense of comparing the forward parameters to those ob-

tained from the reverse measurement after exchanging the

diagonally opposite elements (Sl ~ to S22 and Slz to S2 ~).

This is a consequence of the fact that, in general, the

system is “polarized” or “asymmetric” with respect to the

nonnominal complex port-impedances. Any two-port will
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Fig. 2, Apparent backward transmission of the Through and Delay in
the presence of repeatable switching errors due to frequency-
dependent port mismatch.

thus have two measured S*-matrices: S% measured in for-

ward insertion and S%measured in backward insertion, with

subsequent exchange of the diagonally opposite elements.

D. The Behavior of TSD Under Switching Errors

Simulated TSD calibration data may be obtained from

the S to S* transformation (29>(32) by assuming the port

impedances Z~ij to be known functions of the frequency and

by substituting, as standard S-parameters, numerical values

of the elements of the Ss=, Sss, and Ss~ matrices defined by

equations (5. 1}(5.3 ) of Appendix V.

In this way, simulated S ~, Ss, and SD matrices (see

Appendix V) are obtained that may be used as test input

data for the TSD algorithm. At the same time, the standard

S-parameters Sx of a known network X may be used to

compute its S}parameters under the same Z~ij assumptions.

The obtained S% matrix then represents a simulated uncal-

ibrated measurement affected by the same switching errors

as the ST, Ss, and SD data.

The computed scattering matrices S~ and S~ of the error

two-ports A and B, obtained from TSD, may then be

stripped, with (25)–(28 ), from the S~matrix, and the result-

ing matrix Ssx (“stripped” Sx) compare,d to the original

Symatrix, used as input to the S to S* transformation.

Such a numerical simulation of a network analyzer,
affected only by port-mismatch switching errors, has already
been performed by assuming the impedances Z~ij to be

equivalent to eight different resistive loads Rnij located at

eight different electrical distances d~ij from the external

measurement-port interfaces, deep inside the switching test

set, according to the expressions

Znij =
r.ij + ~ tan O.ij

z~,
()

R.ij

1 + ~rnij tan 6~ij
rnij = —

20 ‘
(43)

The specific values of the real loads Rnij and of their

distances Otiij from the port interfaces have been changed

randomly in switching from one Z~ij to the other, thus

introducing 16 arbitrary parameters in the port impedances.

Gum ljoi 77,’s2/15 2321 S9

mEuEtcw QQ)

Fig. 3. Apparent forward transmission of the Through and Delay in the
presenceof switching errors. Comparison with Fig. 2 shows different
apparent nonreciprocit y ratios S~~/S2~.

These, as a consequence, change with frequency in mutually

uncorrelated ways.

Typical examples of the simulated calibration data ob-

tained for the Through and the Delay are shown in Figs. 2

and 3. It is easy to see that the S to S* transformation leaves

the data for the Short unchanged, so that Ss = Sss [Appen-

dix V, (5.2) and (5.5)].

An analysis of the reduced expressions of S~z and S~l for

the Through and the Delay, obtained from (30) and (31),

shows a mutual inconsistency of these data that cannot be

accounted for in the simple TSD error model. This inconsist-

ency is due to the apparent nonreciprocity ratios of the

Through and. of the Delay, expressed by

S~2 (C,,l + C.,l)e’i + (C,,l – C.,l)e-Pi ~ ~
—.
S~l (C,l, + C41,)ePi + (C,l, – C41,)e-Pi ‘

i=l,2 (44)

being, in general, different in the presence of switching

errors, while, according to the error model, it should be

(45)

This inconsistency may, however, be removed by assuming

the impedance-reference line Lz, used in the delay standard,

to be “virtually” nonreciprocal, with

ss~ =

Ts~ =

where

o e–P2f
e–P2° o

(46)

~–P2’ o

0 ePi’ = e-’ ‘.”2 e:, (47)

(48)

(49)

This assumption does not invalidate usage of the line

Lz as an impedance standard and does not introduce any
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Fig. 4. Magnitude of the forward transmission for the error two-ports A
and B, computed from simulated TSD calibration data representing
switching errors.

new unknowns, as the nonreciprocit y is uniquely deter-

mined by the known mutual inconsistency of the through

and delay data. The S-parameters of error two-ports A and B

may still be explicitly computed with the same algorithm

(Appendix V) if the fundamental matrix products

are redefined as

(51)

(52)

KNEW= e-~(T;~ T~l) (53)

where

J_-

S12D s~l~

‘-’=& ‘b= ‘ZID ‘lZT”

——

(54)

Following this redefinition, it is

DET (HN~w) = DET (KNEW)= 1 (55)

instead of

DET (H)= DET (K) = ~ & = e2’ # 1. (56)
21

Error two-port solutions S~ and S~ have been computed

with a TSD error-computation program, modified accord-

ing to (52) and (53). These error two-ports appear to

represent at least part of the errors due to tlhe repeatable

port-impedance changes as shown in Figs. 4 and 5. Indeed,
by stripping the obtained error two-ports A and B from the

Short (S~), we obtain a residual network having

S1l = S22 = –1 and S12 = S21 = O, equivalent to an im-

mediate short at both measurement interfaces (Sss). Also, by

stripping the error two-ports from the Through (ST) and

Delay (SD), residual networks are obtained having

S1 ~ = S22 = O (Fig. 6) to within the rounding off errors of

the processor.

Gulf W21 7742/1s. 23.29. s9.

viii?S21 ‘m

2

,.

I 8
, $

*
*

S2L4 PHASE

and 0

‘ZIB
PHASE

IN -2

06GREE

(LINEAR)

+

Fig. 5. Phase of the forward transmission for the error two-ports .4 and
B computed from simulated TSD calibration data representing swit-
ching errors,

In transmission, however, both the Through- and the

Delay-residual networks show residual magnitude and

phase ripples around the expected smooth values of Slz and

S2 ~ of the lines L1 and L2, which are flat in magnitude and

linear in phase.

Our present conclusion is that, although the two-port

TSD model is fully capable of representing any errors other

than switching, including any external interfacing networks,

it cannot, in general, represent the totality of the switching

errors. In practical situations, compounding switching and

nonswitching errors, the stripping of the computed error

two-ports A and B will remove the totality of the nonswit-

ching errors and an unspecified part of the switching errors.

This is a consequence of the fact that the Sx to SM transfor-

mation, defined by (21 )–(24), cannot completely match the S

to S* transformation (29)–(32), irrespective of both having

the same total number of parameters (the Z.ij and the

elements of S~ and SJ. This behavior, probably due to the

fact that only the products S12 S2~ of the error two-ports are

relevant, must be shared by all calibration procedures using

the same error model.

It will be interesting, in these respects, to investigate

whether the leakage entries of the Super-TSD error network

T-matrix T may provide a full representation of the swit-

ching errors for n = 2 by increasing the number of available

model parameters. We are assuming, however, that the

residual switching errors, left after stripping the error two-

ports, behave as the total switching errors and may thus be

represented by an S to S* transformation based on “equiv-

alent” port impedances Z~ij and corresponding C~ij

coefficients.

A method has been developed for computing the equiv-

alent C~ij coefficients of the residual switching errors, from

the scattering parameters of the “Residual-Through,” of the

“Residual-Delay~ and those of an auxiliary reciprocal, non-

symmetric network, to be measured as a reference unknown

in forward and backward insertion, during system calibra-

tion. The obtained C~ij coefficients are then used to post-
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Fig. 6. The residual network obtained by stripping the error two-ports ~ and B from the Through data appears to be matched
to withur the rounding off errors of the used processor (CDC 6400).

process the S-parameter data obtained from the stripping of

the error two-ports for final correction. The expressions of

the equivalent C~ij coefficients must be omitted, here due to

space limitations, but will be reported with results of the

postprocessing in a future paper.

IV. CONCLUSION

A new calibration procedure for automated network

analyzers has been developed that extends the basic philo-

sophy of the TSD method to multiport scattering-parameter

measurements affected by multiple signal leakage.

The new Super-TSD procedure computes a global error

representation for the whole measurement system down to

the defining of interfaces of the unknown network by means

of explicit matricial expressions using the measured scatter-

ing parameters of at least three multiport standards.
Various combinations of Throughs, Shorts, and Delays

may be used as n-port standards to calibrate an n-port

network analyzer system.

A preliminary study has also been conducted to investi-

gate the capability of the classical two-port TSD method to

correct the switching errors due to repeatable measurement-

port mismatch changes typical of switching S’-parameter test
sets. It appears that TSD can be made to correct for these

errors too by introducing a minor mathematical

modification and by adding data postprocessing after the

deembedment of the error two-ports from the uncalibrated

measurements.

Future research activities should aim at uncovering the

restrictions to the arbitrary choice of one of the quadrants of

the error-network T-matrix in Super-TSD and investigate

this method in relation to the correction of repeatable

switching errors. The sensitivity of the method to toler-

ances upon the parameters of the used standards and to

the rounding off errors generated by practical processors are

subjects of extreme engineering interest.

APPENDIX I

By definition, the T-parameter matrix of the 2n-port

error-network (Fig. 1) relates the vector of the input-

interface waves bi,ai to the vector of the output-interface

waves aj,bj according to the matrix expression

bi ‘j _ T1:T
=T” – ----+--~- . ‘j

at bj T3 ~ T4 bj
(1.1)

i=l,2, .”., n (1.2)

j=n+l, n+2, ”””,2n. (1.3)

In (1.1) waves bi and bj emerge from the error network at the

input and output interfaces, respectively. Similarly, waves ai
and aj are incident on and propagating towards the error

network at these interfaces.

As seen from the unknown network, however (or any of

the calibration standards), the roles of the output-interface

waves aj and bj are obviously interchanged. Waves bj
emerging from the error network are incident upon the

unknown (or the standard), while waves aj, incident upon

the error network, emerge from the unknown (or the
standard ). As a consequence, waves aj are related to waves bj
through the n x n scattering matrix Sx of the unknown (or

the matrix S~i of standard number i)

Iajl =Sx. \bjl

or

Iujl =S~i Ibjl. (1.4)

Because of this relation, the vector aj,b jof the error-network

output-interface waves, appearing in the right-hand member

of (1.1), may be written as

, _ _:x_/_g_bja.

bi “ ZII “ bi
(1.5)

-.. .,, .,
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where Z is an n x n matrix with all zero entries and I is the and, by subtracting (2.3) from (2.1), we have

n x n unit matrix. By substituting the expression (1.5) in the

right-hand member of (1.1) and carrying out the blocked- [(1 @ S$1) – (I @ S~3)] oRS(T1 )

matrix product, we obtain the 2n x 2n matricial equation
- [(SMI 8s;,) - (SM3 @ X3)] “ ~s(z)

bi T1 \ Tz Sxlz bj
___–:--- . –——_& . - [(SM, @ 0- (SM3 @ q] “ ~s(~.)

(.2i ‘ T3 \ T4 2;1 bj
= F’ ~RS(T1) – C “ RS(T,) – D “ RS(TA) = 101. (2.5)

T1 “ Sx @_ . bj. -------—
T3”Sx~T4 bj

(1.6)
Also, by premultiplying (2.4) by A-l and (2.5) by C-1, we

have
which may be split horizontally in the two n x n matricial

equations RS(T3) + A- 1. B” RS(T4)=A ‘1 “ E “ RS(TJ (2.4)

Ibil =( TISX+TZ) Ibjl (1.7)
RS(T3) + c- 1. D” RS(T4)=C ‘1 “ F ~RS(T1) (2.5’)

Iail =( T3SX+T4) \bjl. (1.8)

Equation (1.8) may be solved for the vector bj by pre-
and subtracting (2.5’) from (2.4’)

multiplication by the matrix (T3 . Sx + T4)-1, obtaining (A-’B - C-’D) ~RS(T4) = (A-’E - C-lF) ~RS(T1)

Ibjl =(T, ”SX+T4)-1 Iail. (1.9) (2.6)

Finally, by substituting (1.9) in (1.7) we have which may be solved for the vector RS(T4)

Ibil = (Tl s,y+ Tz) (T3 ~Sx+ T4)-1 ~ Iail (1.10)

and, comparing it with the definition \bi I = S~” Iai I of the

measured, input-interface n x n scattering matrix SM, we

have

SM = (Tl “ Sx + Tz) “ (T3 . Sx + T4)-1. (1.11)

This equation shows how the four quadrants Ti, .””, TAof

the error-network T-matrix relate the measured scattering

matrix SM to the true scattering matrix Sx of an unknown

network X. For an arbitrary calibration standard i, the same

equation may be rewritten as

SMi = (Tl . Ssi + T2) . (T3 . Ssi + T4)-1 (1.12)

which is the form given as (1) of the text.

RS(T4) = (A-lB – C-lD)-l ~(A-lE – C’-lF) “ RS(T1).
(2.6)

Similarly, by premultiplying (2.4) by B- 1 and (2.5) by D- 1,
we have

B-l “ A “ RS(T3) + RS(T4) = B-l ~E ~ILS(T1) (2.4”)

D-l “ C “ RS(T3) + RS(T.) = D-l . F “ RS(T1) (2.5”)

and subtracting (2.5”) from (2.4)

(B-lA - D-lC) . RS(T,) = (B-lE - D-lF) ~RS(T1)
(2.7)

which may be solved for the vector RS(T3)

APPENDIX II
RS(T3) = (B-lA – D-lC)-l “ (B-lE – D-lF) . RS(T1).

The fundamental Super-TSD calibration equations, given (2.7’)

by (2) of Section H-D, maybe explicitly rewritten for three

arbitrary calibration standards, i = 1, 2, 3, as Finally, by substituting (2.6) and (2.7’) in (2.1). we have

(1@ S;,) ~ RS(7’,) + RS(T2) - (SM, 8 S;,) ~ ~S(TS)
~S(T2) = [(SMi C3S;1) “ (B-lA – ~-lc)-l

- (sM, @l) “ M’(L)= Iq (2.1) . (~-lE _ ~-lF)

(18 S;2) ~ RS(T,) + RS(Tz) - (sm @ s$z) “ RS(T3) +(sM, @I)” (~-’~–c-’~l-l

- (Sm @ 1) ~M(TA) = 10I (2.2) . (A-lE - C-’F)- (l@ S:l)]

(1@ S;3) ~RS(T1) + RS(Tz) - (sm 8 S$3) “ ~S(T3) . RS(T1). (2.8)

- (SM38 1) ~ RS(T4) = 10 I (2.s)
The obtained equations (2.6), (2.7’), and (2.8) represent the

where the 10 I‘s in the right-hand members are zero vectors
.,

explicit solution of the Super-TSD calibration equations, as

of order n2. Then, by subtracting (2.2) from (2.1), we have already given by (4}(6) in Section II-D.

[(~ @ S;,) -(1@ %)1 ~RS(TI)
Following a procedure quite similar to that outlined by

(2.1)-(2.8), it is also possible to directly compute the quad-

- [(SMl @ S;l) - (SMZ 8 %)1 ~RS(~3) rants RI, . . . . R4 of the inverse R = T-1 of the error

- [(sMl @ I) - (SMz @ l)] “ ~S(T4)
network appearing in the first form of (13 ) of Section II-E. It

is convenient here to express these R, quadrants in terms of

. E “ RS(T1) – A “ RS(T3) – B . RS(T4) =: \OI (2.4) their S(Ri) stacking operators.
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The final solution is given by

S(RI ) = Arbitrary nonzero complex column

vector of order nz (2.9)

S(l?z) = –(B;1E3 – D;1F3)-1

. (B;’A3 - D;’c,) “ S(R1) (2.10)

S(R3) = (E; ’AZ – F;lC,)-l

. (E; ’B, - F;’D,) . S(R1) (2.11)

S(R4) = (A;1E2 – C;1F2)-1

. (/I; ’B, - C;’D,) . S(R,) (2.12)

where the auxiliary functions A ~, “””, Fz and As, C3, E3, and

F3 are expressed by

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

APPENDIX III

By solving the 2n x 2n matrix equation (1,1) for the vector

of the output-interface waves aj,bj, we have

while, by definition, we have

(3.1)

/bil =S~ tail (3.2)

or

bi SM:Z ~i

ai = ‘>--[-i- “ ai
(3.3)

where Z and I are again the n x n zero and unit matrices,
respectively. By substituting the expression (3.3) of the

input-interface wave vector in (3.1), we obtain the 2n x 2n
matricial equation

Uj RI ~Rz SMI.Z ai
.-- —-,-—_ . -—__; -——.

bj = R3 ~Rb Z: I a,

RI “ S~ ~_R2- . ai. ——-—-—--
R3”S~;R4 ai

(3.4)

which may be split horizontally in the two n x n matricial

equations

lajl =(RIS~+ R,) \ail (3.5)

lbjl =(R3S~+R 4). Iail. (3.6)

Equation (3.6) may then be solved for the vector ai of the

input-interface incident waves

/ail =(R3. S~+R4)-’ Ibjl (3.7)

and by substituting this expression in (3.5) we have

Iajl = (Rl S~+R2) (R3 ~S~+R4)-’ . lbjl (3.8)

which, compared with the definition of then x n scattering

matrix of the unknown network given by (1.4), provides

Sx== (Rl “ S~ +R2) . (R3 “ S~ +R4)-1. (3.9)

The quadrants RI, “””, R4 of the inverse T-1 of the T-
parameter matrix T of the error network may also be

expressed by [24, p. 92, problem 4]

RI = (Tl – T2T~1T3)-1 (3.10)

Rz = (T3 – T4T;1T1)-1 (3.11)

R3 = (T2 – T1T;1T4)-1 (3.12)

R4 = (T4 – T3T;1T2)-1. (3.13)

By substituting these expressions of the n x n quadrants of

the 2n x 2n inverse T-matrix in (3.9), the n-port deembed-

ment equation given in Section H-E is obtained.

It may also be shown that if the quadrants Tl, “””, T4of the

matrix T commute (~ Tj = Tj ~ for i # j), then (3.9) reduces

to
Sx=(T. ”S~– T,)” (– T3” S~+T1)-’.

This is in particular true in the zero-leakage case where the

quadrants Tl, “. ~, T4 are diagonal matrices.

APPENDIX IV

The S to S* transformation (29)-(32) may easily be

obtained by substituting the S to ABCD transformation into

the ABCD to S* transformation.

The chain parameters ABCD of a network may be

expressed as functions of its standard S-parameters (nor-

malized to a real Z.) as

A= +[(1 + S,,)(1 - S22) + S,2S2J

–L{[l - DET (s)] + (S1l - S,,)}
= 2s~ ~

X+Y

= 2s21

B= *[(1 + S,,)(1 i- s.,) – S,2S21]Z.

——~{[1 + DET (S)] + (S1l + S,,)}ZO

U+v———— Zo
2s21

(4.1)

(4.2)



SPECL4LE : TSD NETWORK-ANALYZER CALIBRATION 1113

~[(1 - S,,)(1 - s,,) - S,2S21];;
‘=2s21

= +{[1 + DET (S)] - (Sll + S,,)};
o

U–vi

= 2s21 20

~[[1 - S,,)(1 + s,,) + S,*s,l]
D = 2s21

= +{[1 - DET (S)] - (S1l - S,,)}

x–Y——
2s2 ,

while

AD– BC=~.
21

Through, defined as a residual length -Ll of nominal-

impedance transmission line; the Short, defined as a pair of

immediate shorts at both measurement ports; and the

Delay, defined as a substantial length Lz of nominal-

impedance transmission line.

The need for selecting among multiple intermediate solu-
(4.3) tions, at each frequency point, motivates the assumption of

the length of the line L1 being less than ~1 at any frequency.

The lines LI and L2 could be segments of dispersive wave-

guide with the same cross-section geometry and cutoff

frequency.

In contrast to Super-TSD, where all calibration standards

are assumed to be fully known, the electrical lengths of L1
and Lz need not to be accurately known in TSD, as they are

(4.4) computed in the process together with the respective inser-

tion losses.

The postulated and measured scattering matrices of the

three standards S~i and SMi are expressed as

(4.5) o
s~~ = Ss= = ~_p, e;p’ (5.1)

The supergeneralized S*-parameters, normalized to the

complex port impedances Z~ij and related to traveling SS2 = s~~ =
–1 o

(5.2)

waves, may be expressed as functions of the ABCD par-
0 –1

ameters as

Jz 111
+C~=+D —2211

S;2 =
2(AD – BC)

T

2212 ~: B
A—

Z112 V’-
+C~=+D

(4.6)

(4.7)

(4.8)

(4.9)

If the S*-parameters related to Youla’s power waves [25],

[26] are desired, then (4.1)-(4.5) should be substituted in the

ABCD to power-wave S*-transformation, given by Chen in
o ~–P2

s~~ = S~* = ~_Q2 o

[27, p. 436, eq. (12c)]. Chen’s z, and k, parameters and the
(5.3)

denominator q~ must, however, be changed for every ele-

ment of the S(p) matrix. s~l = Sr=

APPENDIX V

The expressions reported here summarize the explicit S&fz = Ss=
solution of the TSD calibration equations in a form slightly

different than the one given in the original report [19]. In s~~~ s~z~

particular, the definitions given here of the fundamental
s&f3 = s. =

szl~ S22D
(5.6)

T-matrix products H and K are the new definitions in-

troduced in [23] and discussed in Section III-D. where p ~ = rl + jtll and pz = rz + j92. Consistent with the

The three two-port calibration standards used are the zero-leakage assumption, the transmission entries S ~~Sand
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S2 ~S measured for the Short are assumed to be identically On the basis of these auxiliary functions, the S-matrices S~

zero. and S~ are given by either of the following two solutions.

The “measured” Tmatrices of the Through T~ = T& and

of the Delay TD = TD2correspond to the S-matrices ST and

SD and are computed from these through the standard S to

T-parameter transformation. The unknown scattering

matrices of the error two-ports A and B are expressed as

s S12B
S*= y s .

21B 22B

(5.7)

(5.8)

The fundamental T-matrix products H and K are built

according to the new definitions as

H = e-8TD1 T;;

K = e-bT~~T~l.

The eight elements of these two matrix

(5.9)

(5.10)

products may be

directly ;xpressed as scalar complex functions of the-ele-

ments of the ST and SD matrices, as follows:

Hll = RIS1l~Szz~ – DET

HI, = RISII. DET (S,) –

H21 = –R(Sz2~ – Sz2~)

H22 = R[S11~S22~ – DET

Kll = R[S11~Sz2~– DET

Klz = R(S1l* – S1lJ

K21 = R[SZ2, DET (S.) –

Kzz = R[Sll~S22~ – DET

where

(Sr)] (5.11)

s , ,~ DET (SJ] (5.12)

(5.13)

(SD)] (5.14)

(ST)] (5.15)

(5.16)

s ,,~ DET (ST)] (5.17)

(SD)]

R=
1

S~~&~~S~~&~D”

The auxiliary functions HI, “””, H4 and Kl,
defined as

HI = +[R’(H,2 – HI,)+ 1]

H,= *[R’(H,, – Hll) – 1]

H, = R’ “ H12

H4= –R[ . H21

K1 = *[R’(K,, – Kll) + 1]

K2 = *[R’(KZZ – Kll) – 1]

K3= –R’ “ Klz

K4= R’ “ Kzl

where

R’=
1

~(H1l + H2,)2 -4

(5.18)

(5.19)

, K4 are then

(5.20)

(5.21)

(5.22)

(5.23) ~

(5.24)

(5.25)

(5.26)

(5.27)

1——
~(K1l + K22)2 – 4“

(5.28)

First Solution:

s
K4 K222B= —_=—
K1 K3

s
S12BSZ1B= &

3

DET (SB) = – &B=

Second Solution:

Hz H3
DET (SA) = ~ S22A = ~S22A

4 1

s
K1 K4

~2B. ——=_—
K3 K2

s
S,2,S2,B= – ‘B

K3

K2
DET (sB)= – :Sll~= – #ll~.

1 3

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)
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The existence of two alternative solutions is a consequence

of the unique TSD aspect of having the elements e–” and
~– PZ of the postulated S-matrices S =and SDplaying the roles

of “associated unknowns” of the problem. The two alterna-

tive TSD solutions correspond to mutually reciprocal and

opposite values for either of these matrix elements.

Some kind of flag-function is then required to select, at

every frequency, the solution corresponding to a physically

meaningful situation with the electrical lengths of both lines

LI and Lz positive. In these respects, by working out the

T-matrix product 7“1 = T~ 1T~ T; 1,which is equivalent to

stripping the computed error two-ports A and B from the

through, expressions are obtained of the two nonzero

elements of TL1

T
1

~lL1 =e–p~=
S~~*S~~~S~~~

“ [S114S,,~ – DET (ST)+ (Sll~ – SIIJ3,,J

(5.45)

. {S1,,[S,,, DET (S.) - S,,. DET (Sr)]

+ [Sl ~&~~ – DET (SJ] DET (SJ. (5.46)

These two expressions have been shown to be mutually

reciprocal under both solutions. Their ratio, however, ex-

pressed by

DET (S,)
eP1 s~z~– ——

e2pl _
— = s~~*s22,4 s

s~~~
—

e–ul
— (5.47)

z~~ – s22Lr

assumes two mutually reciprocal values under the two

alternative TSD solutions so that its imaginary part may be

used as the required flag-function, signaling which of the two

solutions is physically meaningful. Indeed, if the electrical

length of the line L1 is assumed to be always < ~1 (it is a

“residual” length in real life!), then the imaginary part of e2’”

must always be positive.

It is impossible, on physical grounds, to separate S ~2,4

from S2 ~~ and S12~ from S2 ~B If, however, we accept the

arbitrary assumption

Fs~2.4 s~~~ s~~~

521A= sz~~ = s~~~
(5.48)

separate values of the Sij (i #j) maybe computed. Assump-

tion (5.48) forces the error two-ports A and B to share in

equal proportions the apparent nonreciprocit.y due to the

system errors.
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