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A Generalization of the TSD Network-Analyzer
Calibration Procedure, Covering n-Port
Scattering-Parameter Measurements,
Affected by Leakage Errors

ROSS A. SPECIALE

Abstract—The basic philosophy of the through-short-delay (TSD)
calibration procedure for two-port automated network analyzers has
been extended to n-port scattering-parameter measurements, while
also accounting for the errors due to possible signal leakage between
all port pairs.

The system errors are represented by the scattering response of a
2n-port virtual error network, having n ports connected to the device
under test and n ports connected to an ideal error-free multiport
network analyzer.

The (2n)> T-parameters of the error network are explicitly
expressed in blocks of n? at a time, as matricial functions of the 3n?
S-parameters of three n-port standards, sequentially replacing the
device under test during system calibration.

The possibility has also been investigated of correcting the errors
due to repeatable measurement-port mismatch changes, typical of
switching scattering-parameter test sets. This capability has been
introduced and tested in the classical two-port TSD calibration
algorithm, by means of a minor modification and data postproces-
sing, applied after the removal of conventional errors.

I. INTRODUCTION

VER SINCE the introduction of automated microwave
E instrumentation for the characterization of microwave
components and networks through scattering-parameter
measurements, the need was recognized for automated
system-calibration procedures. These were expected to be
capable of providing a representation of the repeatable
system errors, usable for correcting uncalibrated
measurements.

A large variety of error models and calibration procedures
has been proposed to date, all differing in degree of complex-
ity and effectiveness [1]-[18]. A common feature of all the
proposed error models is the attempt at representing the
repeatable system errors by means of the scattering response
of a virtual error network, assumed to interface the device
under test to an ideal, error-free network-analyzer system.
The various proposed error models differ, however, in
the assumed topological configuration of the specific error
network and in the number of independent complex par-
ameters required for its full characterization.

The removal of the computed measurement errors from
uncalibrated measurements must be performed through a
parameter transformation equivalent to removing (or
“stripping”) the virtual error network from the measure-
ment interface. A common feature of all proposed calibra-
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tion procedures is the reliance upon simple, idealized
standards, for which the scattering response is assumed as
theoretically postulated. The various proposed procedures
differ, however, in the number, specific nature, and com-
plexity of the used standards and in the types of measure-
ments to be performed upon them.

Among the conflicting requirements to be satisfied by any
possible standard, one which has been particularly neglected
is the physical possibility of direct substitution to the
unknown network, at the same interfaces where this is to be
characterized.

The basic assumption of all proposed methods is the
assumed independence and invariance of the error-model
configuration and parameter values upon the nature and
response of the unknown network to be measured. It is
generally accepted to be true as long as the measurement
system is time-invariant during calibration and actual
measurements.

All error models and calibration procedures proposed to
date consider either one-port or two-port measurements. It
is generally assumed that n-port networks may be charac-
terized by repetitive reduced measurements, performed with
all but two ports closed upon “known” terminations. This is,
however, a time-consuming proposition and at least one
three-port network analyzer has been built and used to
characterize transistor chips. More ports may be needed for
characterizing microwave IC’s and supercomponents.

The most common single-port error model, used in
reflection measurements, is a virtual error-two-port,
assumed to be inserted between the single-measurement
port of an ideal error-free reflectometer and the unknown
reflection to be measured. This model requires the
specification of three independent complex parameters at
each frequency for a complete description of its effects on
reflection measurements. These parameters are frequently
identified with the entries S,,,S,, of the main diagonal and
the product S;,S,; of the other two entries of the 2 x 2
error-two-port scattering matrix. It is known that at least
three physical-reflection standards and three calibration
measurements are required to determine these parameters.
Occasionally, however, more than three calibration mea-
surements are performed to overcome an expected un-
certainty of a specific standard (sliding termination) or to
introduce redundancy (circle fitting). A fairly common two-
port error model is the simple mirror duplication of the just-
mentioned one-port model, including error-two-ports on
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the outer sides of the two measurement-port interfaces
where the two-port unknown networks are connected for
measurement. This model is defined, of course, by six inde-
pendent complex parameters, frequently identified as the
entries S,4,5,, and the products S,,S,, of the two error-
two-ports. This model requires, therefore, the measurement
of at least six complex quantities at each frequency for full
specification. Many of the proposed two-port calibration
procedures, using this two-error-two-port model, prescribe,
however, the use of many more standards and the acquisi-
tion of many more calibration data than the minimum
strictly required. This redundancy of calibration standards
and measurements has been so far introduced mainly to
simplify the generally rather sophisticated mathematical
manipulations needed to compute the error-network par-
ameters from the calibration data.

These mathematical operations frequently involve the
solution of sets of simultancous, nonlinear complex equa-
tions which, with few fortunate exceptions, require, in
general, lengthy numerical iterative processes. These math-
ematical complexities have led many authors to introduce,
besides the just-mentioned redundancy of calibration stand-
ards and measurements, a variety of arbitrary assumptions
upon the nature and size of the errors as expedients for
simplifying the solution of the calibration equations and
circumventing the need for slow numerical iterations. While
these practices have possibly been successful to this extent,
they have, however, introduced an unnecessary burden on
the acquisition of the calibration data and restricted the
capabilities of error removal in terms of error types and size.
They also introduced problems of mutual consistency
among redundant calibration data.

The most common arbitrary, simplifying assumptions
intrinsic to many of the known calibration procedures are:
1) negligible measurement-port mismatch for at least one of
the ports; 2) negligible response distortion due to the
external interconnecting networks (cables, hinged arms,
adaptors, transitions, and the like); and 3) negligible
measurement-signal leakage, bypassing the unknown
network.

The first two assumptions, widely the most common,
consider at least one of the measurement-ports as having
close-to-nominal impedance, usually 50-Q real, and thus
limit the effectiveness of the calibration to the partial
removal of only the internal system errors, up to front-panel
interfaces. These assumptions also set limits upon the
acceptable size of the errors to be corrected.

The recently introduced Through-Short-Delay (TSD)
calibration procedure [19], applies to the previously men-
tioned two-error-two-port error model, but, in contrast to
the previously known methods, eliminates redundancies
and arbitrary assumptions, with the exception of zero leak-
age, while providing an explicit, noniterative solution of the
calibration equations. The TSD method reduces the total
number of calibration standards to three, which is the
minimum number of standards required to completely
specify the assumed model. All TSD standards are simple
two-port devices having no moving parts, which can always
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be designed to physically fit in place to substitute
the unknown network directly at its defining interfaces. This
possibility automatically includes any eventual intercon-
necting network within the measurement system being
calibrated. In particular, the TSD procedure does not
assume negligible measurement-port mismatch nor negli-
gible response distortion by the external RF interfacing
networks. As a consequence, even rather sophisticated
interfacing networks may be included in the measurement
circuit if needed. Wafer and microwave IC probes are
interesting examples.

The delivered explicit solution of the TSD calibration
equations provides closed-form expressions of the scattering
parameters of the error-two-ports, which may be directly
used in an explicit parameter transformation, to correct
uncalibrated measurements. This procedure has been
proved capable of correcting for large internal and external
repeatable system errors to within the resolution and stabi-
lity of the used system hardware [21], [22] It also makes
measurements possible at nonstandard impedance levels
and upon non-TEM wave modes.

Because of the original choice of its error model, however,
the TSD method is unable to account for errors due to signal
leakage, bypassing the unknown, nor is it applicable to
measurements performed upon multiport microwave
networks. Recent theoretical work [23] has extended the
capabilities of the TSD method to multiport S-parameter
measurements, while also accounting for the errors due to all
possible signal-leakage paths, bypassing the unknown
network between any of its port pairs and any pairs of
measurement-system ports.

No theoretical limitation was found upon the relative
amount of signal leakage that can be corrected for, although
increasing system resolution is expected to be required in
measurement situations affected by substantial leakage.

The basic advantages of the original TSD procedure,
represented by the fast execution of the explicit calibration
algorithm and the ability to handle large errors, have been
retained in the new, generalized explicit Super-TSD n-port
calibration algorithm.

Using rather unconventional matrix algebra operators, it
has been possible to express the new generalized explicit
solution in a concise symbolism, directly translatable in
standard programming language.

It has also been proved that the obtained matricial
solution retains its validity in the conventional casesof n = 1
(single-port reflectometer) and n =2 (conventional two-
port network analyzer). In particular, assuming zero leakage
in the n = 2 case, the Super-TSD matricial solution becomes
coincident with the scalar solution already obtained for
TSD.

In conclusion, it appears that the new Super-TSD algor-
ithm includes, as particular cases, all the reflectometer and
network-analyzer calibration procedures proposed to date,
including those attempting to account for leakage errors. A
particular class of network-analyzer errors which, however
widely recognized, is not yet known to be corrected by any
existing calibration procedure, arises from the need for
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rearranging the configuration of the internal or external
microwave measurement-circuits of a network analyzer in
order to perform a full two-port measurement of all four
scattering parameters of an unknown network. This
measurement-circuit rearrangement is obtained, partially
‘or totally, by means of coaxial microwave switches.
S-parameter test sets are, accordingly, classified as “non-
switching” or “switching,” depending on whether the un-
known must be manually disconnected and reconnected in
reverse insertion for a full four-parameter measurement.

These circuit manipulations are, in particular, known to
affect the measurement-port mismatch, as seen from the
unknown at either interface.

Regardless of the circuit reconfiguration being partly or
totally obtained by means of microwave switches, the basic
assumption of a time-invariant system, common to all
known calibration and error-correction procedures, is
invalidated. It then becomes interesting to ascertain wheth-
er a calibration procedure that implies cycling the mea-
surement-circuit configuration through exactly the same
steps for all the used standards and for the unknowns to be
measured, could generate a global error-model representa-
tion compounding all the errors due to repeatable
measurement-port mismatch changes consequent to circuit
reconfiguration. In a first attempt at solving this problem,
the capability of the two-port TSD method to correct for
these errors has been investigated theoretically and numer-
ically. The TSD method was selected because of the invar-

“iance of the circuit reconfiguration cycle during system

calibration and measurements.

Simulated calibration data have been obtained by means
of a parameter transformation, providing the erroneous
scattering-parameter readings that would be generated by a
network analyzer affected only by repeatable port-mismatch
changes. The input data required by this transformation are
the true, standard S-parameters of the considered unknown
(or standard) and the assumed complex measurement-port
impedances of the test set in its four configurations.

As a result of this analysis and investigation, a minor
modification has been introduced in the TSD calibration
algorithm to allow for a peculiar “nonreciprocity inconsis-
tency” introduced by the port-mismatch changes.

It has also been concluded that the TSD error-model,
which is common to many other previously known methods,
is, in general, not suited to fully represent this type of error. A
method has, however, been developed for postprocessing the
scattering-parameter data obtained after the stripping of the
error-two-ports from the uncalibrated measurements and
removing residual switching errors not included in the
model.

A similar investigation is being undertaken for the new
multiport Super-TSD method in consideration of the fact
that switching is bound to become mandatory if multiport
nieasurements are to attain any acceptable degree of
practicality.

An important consideration is that modern solid-state
microwave switches may be expected to provide the
required repeatability of response to much tighter tolerances

| ERROR NETWORK UNKNOWN
Sy — ‘ Sy~
1 N+1
N DU
|
2 | N+2
al E, IN+3 X
—— 3 ]
. 2N
-5, |
! ! l a b
bl T1 | T2 a] I N+t N+t
= - _ = Sx
N A a,, b,
Lo — — — — 4
1r=1,2 N
| = N +1 2N
Fig. 1. The Super-TSD error model is a 2n-port virtual error network

interfacing the unknown n-port to an ideal n-port network analyzer.

than present-day electromechanical models and that repeat-
ability is all that is needed if the method used does not
assume any limitations upon this response.

II. SUPER-TSD

A. The n-Port Error Model

As the original TSD method, Super-TSD relies on a
global representation of all system errors by means of the
scattering response of a virtual, linear error-network inter-
facing the device under test to an ideal error-free multiport
network-analyzer system. The Super-TSD error model,
represented in Fig. 1, consists of a single 2n-port Ey,
embedding the unknown n-port network X. The virtual
error network Ey has the n-ports 1,2, - - -, n connected to the
ideal multiport network analyzer system and the n-ports
n+1,n+2, -, 2n connected to the unknown network.
These two groups of ports define the error-network input
interface, where multiport scattering-parameter measure-
ments are performed, and the inaccessible error-network
output interface, where the true scattering matrix Sy of the
unknown is defined.

As no assumption is made upon the behavior of the error
network Ey, aside from linearity, a maximum of (2n)*
independent complex parameters are required at each
frequency to quantitatively describe it in matrix form.

An ideal ordered correspondence may be assumed be-
tween the ports 1, 2, ---, n of the input interface and those
n+1,n+2 -, 2n of the output interface. Under this
assumption, any of the n signal paths between an input port
m and the corresponding output port m + n may be con-
sidered a “direct” path, while any other path may be
considered to represent signal leakage.

It is easy to sec that there are 2n(n — 1) leakage paths out
of a total of n(2n — 1). As a consequence, 4n(n — 1) of the
(2n)? independent complex parameters, describing the error
network at any frequency, represent signal leakage.

In zero-leakage situations only direct-signal paths will
exist and the 2n-port error network Ey may be sliced
horizontally in n two-ports, directly connecting correspond-
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ing input and output ports. In this case, any matrix represen-
tation of Ey will contain only 4n nonzero entries and
4n(n — 1) zero’s.

B. The n-Port Calibration Standards

In the new Super-TSD calibration method no specific
assumption is made a priori upon the configuration and
nature of the calibration standards.

Three basic requirements are, however, assumed to be
satisfied by any of the used standards.

a) Allstandards must be electrically connectable to phys-
ically replace the unknown X at its definition interface
(portsn + 1,n + 2,--,2n), using the same type of electrical
connection.

b) The scattering matrix S; of standard number i must be
theoretically postulated or otherwise known from a primary
measurement.

c) At least one of the standards must contain a fully
known impedance-reference component.

Requirement a) implies that all the used standards be
nports as the unknown network X to be measured. Require-
ment b) restricts the types of components usable in stand-
ards to a few extremely simple circuit elements for which
the relevant electrical parameters may be theoretically
postulated or determined by primary two-port measure-
ments. Typical elements are short circuits, open circuits,
segments of beadless coaxial air line or waveguide
(Throughs and Delays) and, to a lesser extent, calibrated
resistors.

It is believed that a large variety of n-port calibration
standards may be obtained by using different combinations
of Throughs, Shorts, and Delays connected in various topo-
logical configurations among the n ports of the various
standards. Also the same physical object may be reused as m
different calibration standards if it is physically connectable
in m of the n! possible ways, while being every time defined
by a different n X n scattering matrix Sg,.

C. The Basic Super-TSD Calibration Equations

Following the philosophy of the Super-TSD method,
system calibration is obtained by collecting at each measure-
ment frequency the full n X n complex matrix of erroneous
S-parameter readings S, while having standard number i
with known S-matrix Sg; electrically substituted for the
unknown X.

The most convenient representation of the error-network
scattering response is given by its complex 2nx 2n
T-parameter matrix (Fig. 1). It can be proved (see Appen-
dix I) that the relation between the erroneous measured
scattering matrix Sy, defined at the error-network input
interface, and the corresponding Ss; matrix is given by
SM1=(T1'SSi+T2)'(T3'SSz+’1:1-)_1’ =12,k
(1)
where Ty, -+, T, are the four n X n quadrantsofthe2n x2n

T-matrix T. Thisis a matricial bilinear transformation of the
postulated n X n matrix Sg; into the n X n measured matrix
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Sy This transformation describes the n-port reflection at
the input of the standard as seen through the 2n-port linear
embedding.

For n =1, the error network Ey reduces to a simple
two-port, the matrices S,y and S; become complex scalars
with the physical meaning of reflection coefficients, and the
T-matrix T becomes 2 X 2 complex.

It is easy to recognize that (1) then reduces to the
well-known scalar bilinear transformation of the reflection
of a given load impedance as seen through a linear two-port.

The Super-TSD calibration problem consists of comput-
ing the entries of the quadrants T, -+, T, of the T-matrix T
from a sufficient number k of matrix pairs Sy, Ss;-

D. The Explicit Matricial Solution

It is easy to show that any of the kn x n matricial
calibration equations (1) may be rewritten as

T, Ssi+ T —Swi" Ty Ssi — Smi - 1
= |0}, i=12 -k (2)

Each of these equations could be developed to a set of n*
linear homogeneous equations in the entries of the error-
network T-matrix. As there are (2n)* elements in the matrix,
no more than four sets and four n-port standards are strictly
required to solve the problem.

This type of solution is, however, not very attractive, as
the formal development of the n X n matrix in the left-hand
member of (2), for each standard, is already a rather elab-
orate operation for n = 2 and would become impractically
complicated for n larger than 2. Besides, this type of solu-
tion would lack generality.

It is therefore interesting to investigate the possibility of
solving the set (2) in matricial form by expressing the
quadrants T;, -+, T, as matricial functions of the matrices
S and Sg;.

In these respects, it is interesting to notice that the set ofk
matricial equations (2) looks like a linear set of n xn
homogeneous equations in the four unknown quadrants
T, Th.

Attempts at solving this set by applying the known
methods for the solution of sets of scalar linear equations
would fail, however, because of the noncommutativity of
matrix products and the appearance of the quadrant T; in
the “sandwich” matrix product Sy - T3 - Ss;.

It is, however, possible to break the sandwich product by
applying a transformation that uses two matrix operators
known in multilinear algebra.

These are the Kroneker tensor product 4 @ B of two
matrices A and B [24, pp. 235-236] and the stacking
operator S(4) of amatrix A [24, p. 245, problem 16]. Applied
to n X n matrices 4 and B, the Kroneker product generates
an n* xn? product matrix, while the stacking operator
transforms an n xn matrix A into the n’-dimensional
column vector S(A4) by sequentially stacking the columns of
A in vertical order.

Alternatively, a “reshuffle” or “row-stacking” operator
RS(A) = S(AT) may be used which is equal to the stacking of
the transpose AT of the matrix 4. RS(A4) is therefore an
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n*-dimensional column vector, sequentially containing, in
vertical order, the rows of A rotated 90° clockwise.

The breaking of the sandwich matrix product A - C - B
may then be obtained in either of the two following forms:

S(4-C-B)= (BT®A4) - S(C)
RS(4 - C - B)= (4 ® B") - RS(C).

Using the second form and completing with the n X n unit
matrix I the nonsandwich products of (2), this may be
rewritten as

(I@ST) - RS(Ty) + RS(T5) — (Sw: @ S5) - RS(T;)

— u:®1)- RS(T) = [0] (2)
wherei=1,2 --- k.

The advantage of (2') is that all its terms are matrix-by-
vector products of the same order »n?, and thus these
equations form a set of linear, homogeneous matricial
equations in the four column vectors RS(T;),i=1,2,---, 4.

Provided at least three n-port standards are measured
during system calibration (k = 3), the following explicit
vectorial solution may be obtained from the set (2) by
Gaussian elimination (see Appendix II):

RS(Ty) = Arbitrary, nonzero complex column vector of
order n? (3)

RS(T;) = {(Sm1 ® S§;)(B"*A — D~ 'C)""(B"*E — D™'F)
+ Sy ®INA™'B— C D) "Y(A~'E — C"'F)
- ®S§1)} " RS(Ty) )

RS(Ty)=(B"'A - D"'C)"' - (B"'E — D"'F) - RS(T})

(5)
RS(T,)=(A"'B— C™ D)y ' - (A'E- C7'F)- RS(Th)
(6)
where the auxiliary n? X n? matrices A, B, -+, E, F are
defined by
A= (Sa1 ® S§1) — (Su2 ® S,) )
B=(Sin1®1)— (Sm2®1) ®)
C = (Sm1 ®S&) — (Sua ® &) ©)
D=8y ®I)— (Sus ®I) (10)
E=(I®S§)— (I®SE) (11)
F=(I ®S§1) — (I®S§3)‘ (12)

As indicated by (3)-(6), it would appear that this explicit
matricial solution implies some degree of arbitrariness for
the quadrant T, of the error-network T-matrix. Besides, the
choice of T; as an independent matricial variable is also
arbitrary, as the Gaussian elimination process could be
conducted in such a way as to leave any of the four
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quadrants arbitrary, while expressing the other three as
matricial functions thereof.

This is, in a way, consistent with the homogeneous
character of the set (2). The existence of restrictions to the
completely arbitrary choice of the independent quadrant is,
however, suspected and expected. First, it is quite evident
that it would be meaningless to choose a zero matrix.
Second, it would not be useful to choose the quadrant such
that the total T-matrix T of the error network is singular
(see Section II-D). Also, within the limits of the arbitrariness,
(1) should be invariant to the choice. In these respects, if T,
is the quadrant chosen to be independent and it commutes
with all the Sg;, then

Sui = (TySsi + ) - (T:Ss; + T,)~*
=S5+ LTiY) (LT 'Ss+ T, Ty )t

so that only the three matrices T, T; 1, Ty Ty !, and T, T7!
would be required to specify the matricial bilinear transfor-
mation (1).

E. The n-Port Deembedment Formula

Once the 2n X 2n T-matrix T of the error network has
been computed and assuming that it is nonsingular, the
removal of all system calibration errors from the measured
n x nscattering parameter matrix Sy, of an unknown n-port
X (Fig. 1) may be performed by computing the “corrected”
n X nscattering-parameter matrix S y as (see Appendix IIT):

Sx=(Ry Sy +Ry)Rs" Sy +Ry)!
={(h-LT,'G) " Su+ (G- LT;'T,) "}
{L-NT5' L) Sy + (T, - BTy D) 4!
(13)

where Ry, -+, R, are the quadrants of theinverse T~ ! of the
T-matrix T of the error network Ey.

The second form of the right-hand member of (13)is only
usable if the quadrants of T are individually nonsingular, a
condition that may not be satisfied even if the total matrix T
is nonsingular. If the 7; are nonsingular, however, fourn X n
matrices must be inverted instead of a big 2n x 2n matrix, a
circumstance that may be advantageous to numerical inver-
sion in relation to rounding off errors. Also the second form

of (13) greatly simplifies if the quadrants T, --+, T, of T
mutually commute, in which case
SX=(T4'SM*T2)(“T3'SM+ Tl)_l. (13,)

Being equivalent to (1), the n-port deembedment formula
(13) should be invariant to the choice of the quadrant T,
under the same arbitrariness restrictions.

F. Special Cases

It is interesting to consider the two Super-TSD special
cases for n = 1 and n = 2 with zero leakage.

For n =1, which is the classical case of the single-port
microwave reflectometer, the error network E yreduces to a
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simple two-port with T-matrix: T, = Ty, T,= Ti,, T Tyl 0
Ty =Ty, and T, = T5,. 1= 10 _TTIIB/TD_E_'I“_(TJ
The measured and postulated scattering matrices S,y; and ' .
Ss; become complex scalar reflection coefficients = ,L—RE_]; £S_A_)/§_2 gy 0 ____ (17)
. 0 | —DET (S5)/S125
Sui = Do Ssi=Tg, i=1,23
H T12A Il 0
and the Kroneker products reduce to simple scalar products T, = __6__E_: TZI;I/DET )
T _ . - -
SMi ®SSi - I_‘mi 1_‘si SMi ® I= 1_‘mi I ® SSi = 1_‘si- B _S_IIA/SZIA ; 0__ (18)
Equation (1) then becomes the well-known scalar bilinear 0T 1 S528/5 128
transformation of the single-port microwave reflectometer
[15, p. 399, eq. (1)] T = Dyal o
7| 0 | —Ty,,/DET (T3)
Ty T4+ Ty, 8,,—-DET(S) T 4
Tt = T4 T 1=5, Tu ' o | TS224/S00a | 0 ___ (19)
i=1,23 (1,) 0 : —S118/S128
where S;;, S,;, and DET (S)=S,,S,, — 1,8, are T | R2al O
S-parameters and the determinant of the scattering matrix 0 ! T,,5/DET (Tj)
of the error two-port. /85541 0
It is easy to show that, while the auxiliary matrices A4, - -, =9 :_T/EI{B : (20)

F become simple complex scalars, the Super-TSD solution
(3)-(6) provides the well-known microwave reflectometer
calibration procedure relying on three reflection standards

where the parameters with indices ij4 belong to the error-
two-port A, and those with indices ijB belong to the

1—‘mlr‘m2 Iﬁs3(]~-‘s1 - 1—1s2) - IHmlrm3 I-‘s2(rs1 - I-‘s3) + l'1m2 1—‘m3 rsl(FSZ - 1_‘s3)
RS(T,)=T,, = — T, 14
( 2) 12 (le - 1F.‘m3:)(rmlrsl - 1_‘m2r52) - (rml - 1_‘mZ)(l_‘mlrsl - 1_‘mS I‘\s3) H ( )
(rml - Iﬂm3)(r‘s1 - Fsz) - (rml - sz)(rsl - 1—‘s3)
L)=T, = T
RS( 3) # (rml - I“m3)(rm1]'_lsl - 1_‘mZ FsZ) - (le - 1_‘m2)(1ﬂm1r‘sl - Fm3 1_‘si‘l) H (15)
C T )W Ty = Ty Toy) — (Tag — T Ty Ty — Doy T
Rs(n)___ 7—-22 — (rsl s3)( ml* sl m2 s2) ( 1 2)( 1 1 3 3) T11- (16)

(rml - 1_‘m3)(rm1 I-‘sl - 1_‘m2 rsZ) - (rml - I1m2)(rm1 Fsl - rm3 1--‘s3)

For n =2 and zero leakage, the error network Ey, sliced
horizontally between the two pairs of corresponding ports,
reduces to the TSD two-error-two-port model. It is then
easy to prove that the quadrants T;, - -+, T, of the T-matrix
T may be related to the T- and S-matrices of the two-error
two-ports as follows:

error-two-port B. Also
DET (TA) = S12A/Sz1A DET (TB) = 5123/5213

are the determinants of the respective T-matrices.

On the basis of these expressions, (1), written for the
unknown network X as in (1.11) of Appendix I, becomes
equivalent to the TSD embedding equations

SllA - SllX DET (SA) - SllB[SllAS22X - DET (SA) DET (Sx)]

S.iar = : 2n
e 1= 811x8224 — S118[S22x — S224 DET (Sx)]
Sle ) S12x i S1zB
S = 22
1M 11— SuXSzzA — SllB[SZZX - S22A DET (SX)] ( )
S21A ) Szlx ) 5215
Saim = (23)
2T — 811x8324 — S118[522x — S224 DET (Sx)]
(1 - S11XS22A)S223 — [Szzx — 85,4 DET (Sx)] DET (SB)
S22M = (24)

1- S11XS22A - SIIB[SZ2X - S22A DET (SX)]
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which are, in turn, equivalent to the cascaded T-matrix
product Ty =T, - Ty * T.

At the same time, (13), which assumes the form (13')
because of the diagonal character of the quadrants T}, - -,
T, becomes equivalent to the TSD deembedment equations

S118[S1145220 — DET (Spy)] + (S11a — Sy114) DET (Sp)
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erratic component in the circuit response for all four of the
required situations. Electromechanical microwave switches
have traditionally been considered with much reservation in
these respects.

Siix= 25
YUY g, Saaw DET (5.0 — S324 DET ()] & [S115324 — DET (S,)] DET 53 @)
N — _S12M ) S21A : Sle (26)
X S 18[S22m DET (S4) = 8254 DET (Sy)] + [S1135224 — DET (S,)] DET (Sp)
S — —S21M : Sle : SuB (27)
X S11B[S22M DET (SA) - SzzA DET (SM)] + [SllMSZZA - DET (SA)] DET (SB)
S22m DET (S4) — S504 DET (Sp) + [S110S224 — DET (5,4)]S2,5 28)

S =
22% Sl lB[SZZM DET (SA) - S22A DET (SM)] + [SllMSZZA — DET (SA)] DET (SB)

which are, in turn, equivalent to the cascaded T-matrix
product Ty = T4' - Ty - T3 [19, p. 72, eq. (19)].

The element of arbitrary choice in the quadrant T, as
expressed by (17), is introduced by the possibility of multi-
plying S,,4 and S;,5 by an arbitrary complex scalar,
provided S,,, and S,, 3 are at the same time divided by the
same scalar. This simultaneous scaling of the S;; (i + j)
maintains the values of the products S 1,45, 4and S1,55, 5
unchanged (see Appendix V) and does not invalidate the
obtained error two-port solution as a representation of
the relationship between the measured and the true pa-
rameter matrices S, and Sy.

It is interesting to notice that the diagonal character of the
matrix quadrants 7;, ---, T, is a consequence of the zero-
leakage assumption. In the absence of leakage, the quad-
rants of the T-matrix T are always diagonal matrices for
any number of ports n > 1. As a consequence they mutually
commute and the n-port deembedment formula (13) always
reduces to the much simpler form (13).

A formal development of the Super-TSD solution (3)-(6)
for n = 2 and nonzero leakage is being worked out at this
writing, in order to confirm as a special case the explicit TSD
algorithm and study by inspection the sensitivities of the
Super-TSD solution to tolerances upon the standards and
numerical rounding off errors. In conclusion, it appears that
by appropriate choice of the specific standards used, the
Super-TSD calibration procedure may be shown toinclude,
as particular cases, all the known microwave reflectometer
and two-port network-analyzer calibration procedures; in
particular, all those attempting to correct for leakage errors
by inclusion of one or two leakage paths in the error model.

III. SwiTcHING ERRORS

A. Types and Origins of Switching Errors

It is widely recognized that the rearrangement of the
microwave measurement-circuit configuration required for
a full two-port measurement introduces two classes of
measurement errors.

First, regardless of the circuit rearrangement being ob-
tained manually or by means of microwave switches, the
repetitive making and breaking of contacts introduces an

This class of errors obviously cannot be corrected by any
calibration procedure, due to their erratic statistical nature.
There is hope, however, that technological progress, in
particular the development of modern solid-state switches,
may reduce the proportions of this nonrepeatability of
response.

Even taking this for granted, however, another class of
repeatable, systematic errors will remain, which is directly
related to the cyclic reconfiguration of the measurement
circuit.

These errors arise first from the practical impossibility of
designing a test set to have measurement ports of perfectly
nominal impedance at every frequency, and, second, from
the dependence of the measurement-port mismatch, at any
given frequency, upon the specific measurement-circuit
configuration being used.

Practical systems will thus always be affected by varying
degrees of port mismatch at different frequencies and, on top
of that, the port mismatch at any given frequency will change
cyclically following the circuit-configuration switching. In
the light of this conclusion, the need for external calibration
standards, including at least one traceable impedance-
reference component, becomes mandatory. The use of seg-
ments of beadless coaxial air line or waveguide for this
purpose is gaining widespread consensus.

In a completely general situation, the two measurement
ports of a switching test set will assume four pairs of
uncorrelated complex impedance values during a complete
two-port measurement cycle. It is thus logical to assume
that, in the absence of any other type of error, the test set
readings would correspond to the scattering parameters of
the unknown network X, normalized to the specific complex
port impedances the set has during the measurement of each
individual parameter.

Although the concept of normalization with respect to
complex port impedances is known [25], [26], an unusual
situation arises here, because of each scattering matrix
element being normalized to a different pair of complex port
impedances. We believe such a scattering matrix deserves
the qualification “supergeneralized.”
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TABLE 1
LABELING OF MEASUREMENT—PORT IMPEDANCES IN A
SWITCHING SCATTERING-PARAMETER TEST SET

Measurement Impedance Port 1 Impedance Port 2
i1 Im Lm
S12 112 112
S21 ha L
S22 422 2222

B. Simulation of Repeatable Mismatch Changes

The theoretical simulation and modeling of the repeatable
switching errors due to consistently cyclic measurement-
port mismatch changes is the only reliable basis for a study
of the properties of these errors and for an accurate analysis
of the capability of any calibration procedure to correct
them.

A numerical error simulation also establishes a quantita-
tive correlation between the errors and the port mismatches
that cause them. It would be impossible to accomplish all
this experimentally. The fundamental tool of such a simula-
tion must be a parameter transformation providing the
supergeneralized scattering-parameter matrix S% of a given
network X as function of the true (postulated) standard
scattering matrix Sy (normalized to 50-Q real) and of the
nonnominal complex port impedances the test set is
assumed to have during the various steps of a measurement
cycle.

A two-port S to S* transformation has been obtained (see
Appendix IV) which contains as parameters the four pairs of
complex port impedances Z,; of the test set (n = port
number, ij = indices of the scattering parameter being
measured. See Table I). This S to $* transformation is given
by
Cinn X +Co1 Y+ G5, U+ CyyV

Sty = 29
M0 X +Ci Y+ Cog U+ Cayy V @)
45,
St = 30
2T CX +Cuyn Y + Couyn U + Capn V (30)
5%, = 31
i Co1 X +C121 Y+ Cy U+ C3 V ( )
e _ Ci22X +Cp Y — C35, U — Oy V
S35, =— (32)
Ci2o X + Ci, Y + Cupp U + C3p,V
where

X = 1.— DET (S) (33)
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U =1+ DET (§) (34)
Y=S11—S22 (35)
V= S11+S22 (36)
with
DET (S)=SIIS22_S12S21 (37)
while the 16 coefficients C,,;; are expressed by
Zyi Zy;
o=\ Z N Zay G8)
Z i Zy;j
L= |22 [ 21 3
Cau Zy; i Z3ij (9)
Cyi;= Z _ VZ1iiZyij (40)
! \/ZlijZZij Zo
Caii= Zo + V' Z1iiZ i (41)
N VZyiiZyij Zg
C%ij - C%ij = Ciij - C%ij =4. (42)

In this transformation, the g; and b; waves at the two ports
are assumed to be the traveling waves, as defined by
Kurokawa in [26, p. 201, eq. (43)]. This assumption is
motivated by the fact that it is not clear to us how a network
analyzer could be sensitive to Youla’s power waves [25]. In
any case, even assuming the system to be sensitive to power
waves, the form of the transformation (29)-(32) would be the
same, only the definition of the C,,;; coefficients would
change (see Appendix IV).

C. Properties of the Repeatable Switching Errors

A number of characteristic properties of these port-
mismatch switching errors may be predicted by inspection
of the given S to S* transformation. First, it is easy to see that
a matched two-port will, in general, appcar to be mis-
matched, unless by coincidence C,;;=C31;,=C5 =
C;,, = 0. Second, a reciprocal two-port with the ratio
S12/8,1 = 1 will appear to be nonreciprocal because of a
ratio S%,/8%, # 1, which, in turn, depends on both the port
impedances Z,;; and the intrinsic response of the two port
itself, as characterized by its standard S-parameters. In par-
ticular, different lengths of transmission line with nominal
impedance will show different amounts of apparent non-
reciprocity, as measured by the apparent nonreciprocity
ratio S%, /S%,.

Also, all these properties are quantitatively dependent
upon the direction of insertion of the measured two-port
with respect to the system’s measurement ports, being either
“forward” (Port 1 to Port 1, Port 2 to Port 2) or “reverse”
(Port 1 to Port 2 and Port 2 to Port 1). This is true in the
sense of comparing the forward parameters to those ob-
tained from the reverse measurement after exchanging the
diagonally opposite elements (S;; to S,, and S, to S,,).

This is a consequence of the fact that, in general, the
system is “polarized” or “asymmetric” with respect to the
nonnominal complex port-impedances. Any two-port will
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Fig 2. Apparent backward transmission of the Through and Delay in
the presence of repeatable switching errors due to frequency-
dependent port mismatch.

thus have two measured S*-matrices: S% measured in for-
ward insertion and S% measured in backward insertion, with
subsequent exchange of the diagonally opposite elements.

D. The Behavior of TSD Under Switching Errors

Simulated TSD calibration data may be obtained from
the S to S* transformation (29)-(32) by assuming the port
impedances Z,;; to be known functions of the frequency and
by substituting, as standard S-parameters, numerical values
of the elements of the Sgr, Sss, and Sg;, matrices defined by
equations (5.1)-(5.3) of Appendix V.

In this way, simulated S;, Ss, and S, matrices (see
Appendix V) are obtained that may be used as test input
data for the TSD algorithm. At the same time, the standard
S-parameters Sy of a known network X may be used to
compute its S%-parameters under the same Z ,;;assumptions.
The obtained S% matrix then represents a simulated uncal-
ibrated measurement affected by the same switching errors
as the S+, Ss, and S;, data.

The computed scattering matrices S 4 and Sg of the error
two-ports A and B, obtained from TSD, may then be
stripped, with (25)-(28), from the S%-matrix, and the result-
ing matrix Ssyx (“stripped” Sy) compared to the original
Sx-matrix, used as input to the S to S* transformation.

Such a numerical simulation of a network analyzer,
affected only by port-mismatch switching errors, has already
been performed by assuming the impedances Z,;; to be
equivalent to eight different resistive loads R,;; located at
eight different electrical distances 0,;; from the external
measurement-port interfaces, deep inside the switching test
set, according to the expressions

_ Pyt jtan 0,
=7 Zo,
1 +]rm'j tan enij

R..
wii Fuii = ). 43
’ (=5} @)
The specific values of the real loads R,;; and of their
distances 0,;; from the port interfaces have been changed
randomly in switching from one Z,; to the other, thus
introducing 16 arbitrary parameters in the port impedances.
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Fig. 3. Apparent forward transmission of the Through and Delay in the
presence of switching errors. Comparison with Fig. 2 shows different
apparent nonreciprocity ratios S,,/S,;.

These, as a consequence, change with frequency in mutually
uncorrelated ways.

Typical examples of the simulated calibration data ob-
tained for the Through and the Delay are shown in Figs. 2
and 3. It is easy to see that the S to S* transformation leaves
the data for the Short unchanged, so that Sg = Sgg [Appen-
dix V, (5.2) and (5.5)].

An analysis of the reduced expressions of S%, and S%, for
the Through and the Delay, obtained from (30) and (31),
shows a mutual inconsistency of these data that cannot be
accounted for in the simple TSD error model. This inconsist-
ency is due to the apparent nonreciprocity ratios of the
Through and of the Delay, expressed by

Stz _ (Cazs + Caz)eli + (Capq — Capy)e” i

= - — # 1,
531 (Ca1z + Cag)e?i + (Ca1z — Cayn)e™ i 4

i=1,2 (44)

being, in general, different in the presence of switching
errors, while, according to the error model, it should be

Siar _ S12p _ S124 S128

= = . (45)

S21T SZID SZIA S2IB
This inconsistency may, however, be removed by assuming
the impedance-reference line L,, used in the delay standard,
to be “virtually” nonreciprocal, with

0 e
Ssp I R 0 (46)
e—Pz’ 0 a e P2 0
Isp= 0 p2" ’ 0 e (47)
where
6 =3(p2 — p3) (48)
p2=3(p2 + p3). (49)

This assumption does not invalidate usage of the line
L, as an impedance standard and does not introduce any
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Fig. 4. Magnitude of the forward transmission for the error two-ports A
and B, computed from simulated TSD calibration data representing
switching errors.

new unknowns, as the nonreciprocity is uniquely deter-
mined by the known mutual inconsistency of the through
and delay data. The S-parameters of error two-ports 4 and B
may still be explicitly computed with the same algorithm
(Appendix V) if the fundamental matrix products

H=T, Tp (50)
are redefined as
Hyew = ¢ (Tp, Tp3) (52)
Kyew = ¢ (Tp3 Tpy) (53)
where
e = 1 - 1 _ [S120 Sar
\/DET (H) \/DET (K) S21p Siar
(54)
Following this redefinition, it is

instead of

DET (H) = DET (K) = Sia1 5210 _ 20 +1. (56)
S 21T S 12D
Error two-port solutions S, and Sg have been computed
with a TSD error-computation program, modified accord-
ing to (52) and (53). These error two-ports appear to
represent at least part of the errors due to the repeatable
port-impedance changes as shown in Figs. 4 and 5. Indeed,
by stripping the obtained error two-ports 4 and B from the
Short (Sg), we obtain a residual network having
S;1=8S,,=—1and §,,=8,, =0, equivalent to an im-
mediate short at both measurement interfaces (S ss5). Also, by
stripping the error two-ports from the Through (S;) and
Delay (Sp), residual networks are obtained having
811 =8S,, =0 (Fig. 6) to within the rounding off errors of
the processor.
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Fig. 5. Phase of the forward transmission for the error two-ports 4 and
B computed from simulated TSD calibration data representing swit-
ching errors.

In transmission, however, both the Through- and the
Delay-residual networks show residual magnitude and
phase ripples around the expected smooth values of S, , and
S, of the lines L; and L,, which are flat in magnitude and
linear in phase.

Our present conclusion is that, although the two-port
TSD model is fully capable of representing any errors other
than switching, including any external interfacing networks,
it cannot, in general, represent the totality of the switching
errors. In practical situations, compounding switching and
nonswitching errors, the stripping of the computed error
two-ports 4 and B will remove the totality of the nonswit-
ching errors and an unspecified part of the switching errors.
This is a consequence of the fact that the Sy to S, transfor-
mation, defined by (21)-(24), cannot completely match the S
to S* transformation (29)-(32), irrespective of both having
the same total number of parameters (the Z,; and the
elements of S, and S p). This behavior, probably due to the
fact that only the products S, S, of the error two-ports are
relevant, must be shared by all calibration procedures using
the same error model.

It will be interesting, in these respects, to investigate
whether the leakage entries of the Super-TSD error network
T-matrix T may provide a full representation of the swit-
ching errors for n = 2 by increasing the number of available
model parameters. We are assuming, however, that the
residual switching errors, left after stripping the error two-
potts, behave as the total switching errors and may thus be
represented by an § to S* transformation based on “equiv-
alent” port impedances Z,; and corresponding C,;;
coefficients.

A method has been developed for computing the equiv-
alent C,,;; coefficients of the residual switching errors, from
the scattering parameters of the “Residual-Through,” of the
“Residual-Delay,” and those of an auxiliary reciprocal, non-
symmetric network, to be measured as a reference unknown
in forward and backward insertion, during system calibra-
tion. The obtained C,,; coefficients are then used to post-
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Fig. 6. The residual network obtained by stripping the error two-ports A and B from the Through data appears to be matched

to within the rounding off errors

process the S-parameter data obtained from the stripping of
the error two-ports for final correction. The expressions of
the equivalent C,,,; coefficients must be omitted, here due to
space limitations, but will be reported with results of the
postprocessing in a future paper.

IV. CoNCLUSION

A new calibration procedure for automated network
analyzers has been developed that extends the basic philo-
sophy of the TSD method to multiport scattering-parameter
measurements affected by multiple signal leakage.

The new Super-TSD procedure computes a global error
representation for the whole measurement system down to
the defining of interfaces of the unknown network by means
of explicit matricial expressions using the measured scatter-
ing parameters of at least three multiport standards.

Various combinations of Throughs, Shorts, and Delays
may be used as n-port standards to calibrate an n-port
network analyzer system.

A preliminary study has also been conducted to investi-
gate the capability of the classical two-port TSD method to
correct the switching errors due to repeatable measurement-
port mismatch changes typical of switching S-parameter test
sets. It appears that TSD can be made to correct for these
errors too by introducing a minor mathematical
modification and by adding data postprocessing after the
deembedment of the error two-ports from the uncalibrated
measurements.

Future research activities should aim at uncovering the
restrictions to the arbitrary choice of one of the quadrants of
the error-network T-matrix in Super-TSD and investigate
this method in relation to the correction of repeatable
switching errors. The sensitivity of the method to toler-
ances upon the parameters of the used standards and to
the rounding off errors gentrated by practical processors are
subjects of extreme engineering interest.

of the used processor (CDC 6400).

APPENDIX 1

By definition, the T-parameter matrix of the 2n-port
error-network (Fig. 1) relates the vector of the input-
interface waves b;,a; to the vector of the output-interface
waves a;,b; according to the matrix expression

b; a; T, | | |a;

' = T' J = ..__1_.:.___2_ J i

@ bl LT | b (L.1)
i=1,2-,n (1.2)
j=n+1,n+2 -, 2n (1.3)

In (1.1) waves b; and b; emerge from the error network at the
input and output interfaces, respectively. Similarly, waves a;
and a; are incident on and propagating towards the error
network at these interfaces.

As seen from the unknown network, however (or any of
the calibration standards), the roles of the output-interface
waves a; and b; are obviously interchanged. Waves b;
emerging from the error network are incident upon the
unknown (or the standard), while waves a;, incident upon
the error network, emerge from the unknown (or the
standard). As a consequence, waves a;are related to waves b j
through the n X n scattering matrix S x of the unknown (or
the matrix Sg; of standard number i)

|aj| =Sx- ibj|
or

|aj! = Ssi - |bj|- (L4)

Because of this relation, the vector a »b;ofthe error-network
output-interface waves, appearing in the right-hand member
of (1.1), may be written as

(15)
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where Z is an n X n matrix with all zero entries and I is the
n X n unit matrix. By substituting the expression (1.5) in the
right-hand member of (1.1) and carrying out the blocked-
matrix product, we obtain the 2n X 2n matricial equation

bl _ | Tl D |SxlZ] |b
G| | LT |Z 1] |b
T, Sx 1 T| |b;
e mE NN (1.6)

which may be split horizontally in the two n X n matricial
equations

la:| = (Ts - Sx+ To) - | byl

(1.7)
(1.8)

Equation (1.8) may be solved for the vector b; by pre-
multiplication by the matrix (T; - Sx + T;)~ ', obtaining

|b]| =(T3'Sx+T4)_1' |ai‘. (19)
Finally, by substituting (1.9) in (1.7) we have
|6 = (T, Sx+ To)  (Ty - Sx+ To) ™'+ |a| (1.10)

and, comparing it with the definition |b;| = Sy |a;]| of the
measured, input-interface n X n scattering matrix Sy, we
have

Su=(T,-Sx+T) (Ty- Sx+ T)~'.  (L11)

This equation shows how the four quadrants T;, -+, T, of
the error-network T-matrix relate the measured scattering
matrix Sy to the true scattering matrix Sy of an unknown
network X. For an arbitrary calibration standard i, the same
equation may be rewritten as

Sui=(Ty S+ )" (T3 Ssi + T,) !

which is the form given as (1) of the text.

(1.12)

APPENDIX 11

The fundamental Super-TSD calibration equations, given
by (2) of Section II-D, may be explicitly rewritten for three
arbitrary calibration standards, i = 1, 2, 3, as

(I ® S&,) - RS(Ty) + RS(Ty) — (Swy ® S51)  RS(T)
— Sy ®1) - RS(T3) = [0]
(I ®8%,) - RS(T;) + RS(T;) — (Surz ®S%,) - RS(T3)
~ (Sx2 ®1) RS(Ta) = |0]
(I ® SL;) - RS(Ty) + RS(T;) — (S ® S53) * RS(T3)
~ (Suz ®I) - RS(T) = |0}

where the |0|s in the right-hand members are zero vectors
of order n?. Then, by subtracting (2.2) from (2.1), we have

[(I ®8§,) — (I ®85,)] - RS(TH)
— [(Sars ®SE,) — (Smz ®S5)] - RS(Ts)
— [(Sss ®I) — (Sm2 ® )] - RS(T2)
= E-RS(T,)— A RS(T3) — B- RS(T,) = [0] (24)

(2.1)

(22)

(2.3)

1111

and, by subtracting (2.3) from (2.1), we have

[(I®585)— (I ® S53)] - RS(Ty)
— [(Say ® S81) — (Sms ®553)] - RS(T3)
— [(Suy ®I) — (Sms ®I)] - RS(T2)
= F-RS(T;)— C - RS(T3) — D - RS(T3) = |0]. (2.5)
Also, by premultiplying (2.4) by A™! and (2.5) by C™*, we
have
RS(T)+ A™'-B-RS(T,)=A"'-E-RS(T)) (24)
RS(Ty) +C~'-D-RS(Ty)=C ' F-RS(T;) (25)
and subtracting (2.5') from (2.4)
(A~'B— C~'D)- RS(T;) = (4™ 'E — C™'F)- RS(T})
(2.6)
which may be solved for the vector RS(T;)

RS(Ty)=(A"'B—C~'D)" ! (4"'E— C"'F) RS(T}).
2.6)

Similarly, by premultiplying (2.4) by B~* and (2.5)by D™ %,
we have

B~'-A-RS(T3)+ RS(T,)= B - E - RS(T;) (24")

D' C-RS(Ty) +RS(Ty)=D"'-F-RS(T;) (2.5")
and subtracting (2.5") from (2.4")

(B-'A — D~'C) - RS(T3) = (B"'E — D™ 'F) - RS(T})
(2.7

which may be solved for the vector RS(T3)

RS(T;) = (B4 —D"'C)"' - (B"*E — D" *F) - RS(Ty).
2.7

Finally, by substituting (2.6') and (2.7') in (2.1), we have

RS(Ty) = [(Sws ® S%) - (B4~ D7'C)"!
- (B"'E — D"'F)
+ (S ®I) (A71B = C1D)"!
 (AE - CT'F)— (1 ®Sh)]

- RS(Ty). (2.8)
The obtained equations (2.6'), (2.7'), and (2.8) represent the
explicit solution of the Super-TSD calibration equations, as
already given by (4)-(6) in Section II-D.

Following a procedure quite similar to that outlined by
(2.1)-(2.8), it is also possible to directly compute the quad-
rants Ry, ---, R4 of the inverse R=T" L of the error
network appearing in the first form of (13) of Section II-E. It
is convenient here to express these R, quadrants in terms of
their S(R;) stacking operators.
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The final solution is given by

S(R,) = Arbitrary nonzero complex column

vector of order n® (2.9)
S(Ry)= —(By 'E; — Dy 'F3) ™!

(B3 '4; — D;'C3) - S(Ry) (2.10)
S(R3)= (E3 4, — F; 'Cy) 71

“(E7'By — F3'Dy) - S(Ry) (2-11)
S(R4) = (Az—lEz -Cy 1Fz)-l

(43 'By — C;'Dy) - S(Ry) (2.12)

where the auxiliary functions 4 ,, ---, F,and A5,C3, E;,and

F5 are expressed by

Az = (Si1 ® Ss1) — (Si2 ® Ss2) (2.13)
B,=(Sin ®1)— (St ® ) (2.14)
Cz = (Si1 ®Ss1) — (Shrs ® Ss3) (2.15)
D, = (Sy1 ®I)— (Sis ®1) (2.16)
E,=(I®Ss:) - (I®5s,) (2.17)
Fz = (I ®Ss1) — (I ®Ss3) (2.18)
= (Si11 ® Ss1') — (Sir2 ® Ss57') (2.19)

Cs = (Sh1 ®Ss1') — (Shs ® Ss3') (2.20)
E;=(I®5s5)— (I®55;') (2.21)
F3=(®Ssi')~ (I®Ss3') (2.22)

ApPPENDIX 111

By solvingthe 2n X 2nmatrix equation (1.1)for the vector
of the output-interface waves a;,b;, we have

4| g | B o [BAB[ |5
b; a; LT, a;
R1 l Rz bi
3.1
R3 ! R4 ai ( )
while, by definition, we have
lbll = SM * ’ail (32)
or
b; Syl Z| |a
M e e I I 33
a; Z ]{-I ai‘ (33)

where Z and I are again the n X n zero and unit matrices,
respectively. By substituting the expression (3.3) of the
input-interface wave vector in (3.1), we obtain the 2n x 2n
matricial equation

4| _|Ri{Ry| |SulZ| |a&
bjl |Rs IRy | Z 11| |a
f
_83__§M_:L_132 a; (3,4)
R3 SM ! R4 a;
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which may be split horizontally in the two n X n matricial
equations
IaJ| = (Rl ‘ SM -+ Rz) ‘ [ail

|b;| = (Rs " Su + Ry)

(3.5)
(3.6)

Equation (3.6) may then be solved for the vector g; of the
input-interface incident waves

“ay.

|a:| = (Rs - Sy +Ry)™" - || (3.7)
and by substituting this expression in (3.5) we have
la;] = (Ry " Su+Ry) " (Ry - Sy + Ry)™1 - |by] (3.8)

which, compared with the definition of the n X n scattering
matrix of the unknown network given by (1.4), provides
Sx=(Ry Sy +R;y) (Ry-Su+Ry)" (3.9)

The quadrants Ry, ---, R, of the inverse T~! of the 7T-
parameter matrix T of the error network may also be
expressed by [24, p. 92, problem 4]

R, =(T)- L, T;'Ty) ! (3.10)
R,=(I; - T,T;'T))™? (3.11)
Ry = (Tz -T; 713_1714)_1 (3-12)
R,=(T, - TGT{'T,)™! (3.13)

By substituting these expressions of the n X n quadrants of
the 2n x 2n inverse T-matrix in (3.9), the n-port deembed-
ment equation given in Section II-E is obtained.

It may also be shown thatif the quadrants Ty, ---, T, of the
matrix T commute (T; T; = T; T, for i # j), then (3.9) reduces

to
SX=(T;;‘SM—T2)(—713 'SM+T1)71

This is in particular true in the zero-leakage case where the
quadrants Tj, ---, T, are diagonal matrices.

APPENDIX IV

The S to S* transformation (29)-(32) may easily be
obtained by substituting the S to ABCD transformation into
the ABCD to S$* transformation.

The chain parameters ABCD of a network may be
expressed as functions of its standard S-parameters (nor-
malized to a real Z,) as

A=

[(1+S11)(1 = 8;35) +81,8,4]
2521

2S —{[1l — DET (S)] + (S11 — S22)}

X+7Y

1
B=———[(1 4+ 8;:1)(1 +822) — S128:1]Z,
2851

1
_ ﬁ;{[l + DET ()] + (S11 + $22)1Z0

U+V

= _2_521 ZO (42)
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C— 1 [(1 = S;,)(1 = S15) — S.,8 ]_1_ Through, defined as a residual length L, of nominal-
28,4 1 22 1252l g, impedance transmission line; the Short, defined as a pair of
immediate shorts at both measurement ports; and the
=5 {[1 4+ DET (S)] — (Sy; + S22)} — Delay, defined as a substantial length L, of nominal-
521 Zy impedance transmission line.
U—V 1 The need for selecting among multiple intermediate solu-
=55 7. (4.3) tions, at each frequency point, motivates the assumption of
21 =0 the length of the line L, being less than 44 at any frequency.
The lines L, and L, could be segments of dispersive wave-
b= 232 . [(1~S11)(1 + S25) + $12521] guide with the same cross-section geometry and cutoff
frequency.
— 2_ {[1 = DET (S)] — (S1; — S52)} In contrast to Super-TSD, where all cahl?ratlon standards
Sz are assumed to be fully known, the electrical lengths of L,
X_Y and L, need not to be accurately known in TSD, as they are
=35 (44) computed in the process together with the respective inser-
2 tion losses.
while The postulated and measured scattering matrices of the
S three standards Sg; and S,y are expressed as
AD — BC = Si% (4.5) 0 e
2 Ss1=Ssr=| -0 (5.1)
The supergeneralized S*-parameters, normalized to the _q 0
complex port impedances Z,; and related to traveling Ss, = Sgs = ‘ ’ (52)
waves, may be expressed as functions of the ABCD par- 0 -1
ameters as
Z 211 Z 111
A,/ T - C/Z111Z311 — \/‘—
S* _ lel 21112211 Z211 (46)
11 — .
Z 211 Z ~111
A + +C /211125, +D
\/;Ul \/21112211 e Z211
2(AD — BC
$th=— ( ) P (4.7)
A |22 4 +CZy12Z +D\/ 112
\/ZIIZ "/ZIIZZZIZ 125212 ZZIZ
2
S%, = = > (4.8)
A 221 +C/Z 10 Z +D\/ 121
\/ZIZI \/Z121Z221 121 ZZZI
Z 222 Z “122
A +CJ/Z,,,Z
S 2122 v Zuz 222 122z 2222 (4.9)
22 = — .
Z zZ
A 222 + C / 7 7 + D \/ 122
Z12? Y% 2122 222 1z tans Zs3z
If the S*-parameters related to Youla’s power waves [25],
[26] are desired, then (4.1)-(4.5) should be substituted in the 0 o
ABCD to power-wave S*-transformation, given by Chen in Sgs = Ssp = l h ¢ (5.3)
[27, p. 436, eq. (12c)]. Chen’s z; and k, parameters and the e 0
denominator g; must, however, be changed for every ele- S S
ment of the S(p) matrix. Spyy=Sp= {10 BT (54)
S21T S 22T
APPENDIX V
. . .. Sl 1S 0 55
The expressions reported here summarize the explicit Sryz=S8s= 0 S (5.5)
solution of the TSD calibration equations in a form slightly 228
different than the one given in the original report [19]. In S 5 = Siip Siap (5.6)
particular, the definitions given here of the fundamental M3 = oD S ip Saap :

T-matrix products H and K are the new definitions in-
troduced in [23] and discussed in Section III-D.
The three two-port calibration standards used are the

where p; = r; + jO, and p, = r, + jO,. Consistent with the
zero-leakage assumption, the transmission entries S, ,gand
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S, s measured for the Short are assumed to be identically

Ze10.

The “measured” Tmatrices of the Through T; = Ty, and
of the Delay T, = T, correspond to the S-matrices S and
Sp and are computed from these through the standard S to
T-parameter transformation. The unknown scattering
matrices of the error two-ports A and B are expressed as

S, = Sy1a  Si2a
4=

S214  S224

§. = Si18 Si128

B_ .

S218 S22

(5.7)

(5.8)

The fundamental T-matrix products H and K are built

according to the new definitions as
H = e‘aTDI Tl_)zl
K =e T3t Ty,

(5.9)
(5.10)

The eight elements of these two matrix products may be
directly expressed as scalar complex functions of the ele-

ments of the S; and S, matrices, as follows:

H,;=R[S117S:,p0 — DET (Sy)] (5.11)
H,, =R[S\1p DET (S;) — S;:7 DET (Sp)] (5.12)
H,, = —R(S;,r— S22p) (5.13)
H,, = R[S11pS22,7 — DET (Sp)] (5.14)
K1 =R[S{1pS,,7— DET (S7)] (5.15)
Ki;=R(S117— S11p) (5.16)
K, = R[S,,7 DET (Sp) — S,,p DET (S¢)]  (5.17)
K35 =R[S111S2,p — DET (Sp)] (5.18)
where
R= L . (5.19)
\/STZTSnTSUDSzw )
The auxiliary functions Hy, ---, Hy and K4, ---, K, arethen
defined as
H;=3[R(Hy, — Hy;) + 1] (5-20)
H,=3[R'(Hp, — Hyy) — 1] (521) -
H,=R -H,, (5.22)
H,=-R -H,, (5.23)
Ky =3[R(Kz; — Kyy) + 1] (524)
K,= %[R’(Kzz - Kll) - 1] (5'25)
K;= —R' - Ky, (5.26)
K,=R - Ky (5.27)
where
R = ! - 1

First Solution:

g _H _H
1147 E = E
H
= = Sus
H,
S22A= H
Siis “Fl
4
S
SIZASZIA= - ;IZA
4
H H
DET (SA)=F1S22A=?I_3S22A
4 2
K
S32s +Ei
Siip= — !
K,
Szzs+E—
3
s. - KK
22B = K, K,
S
SIZBS21B= II<IB
3
K K
DET (SB)= - _1?31’S113= - E‘}’Sus
2
Second Solution:
s, = _H
H
Sns—Fl
S22A= H
3
’H—l — Si1s
S224

SIZASZIA = H
4

H H
DET (SA)::FZSZZA stzu
4
K
Szzs‘|'—l
K;
5113= - K
S =4
225+K1
s __ K K,
2B T o = —
K; K,
S
S1235213= - —IL{LB
3
K, K,
DET (Sg)= — —28,15= — - >S115
( B) K, 11B K, 11B

On the basis of these auxiliary functions, the S-matrices S 4
and Sy are given by either of the following two solutions.

| (5.29)

(5.30)

(531)

(532)

(533)

(5.34)

(5.35)

(5.36)

(537)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)
(5.43)

(5.44)
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The existence of two alternative solutions is a consequence
of the unique TSD aspect of having the elements e~ ** and
e~ "? of the postulated S-matrices S rand S pplaying the roles
of “associated unknowns” of the problem. The two alterna-
tive TSD solutions correspond to mutually reciprocal and
opposite values for either of these matrix elements.

Some kind of flag-function is then required to select, at
every frequency, the solution corresponding to a physically
meaningful situation with the electrical lengths of both lines
L, and L, positive. In these respects, by working out the
T-matrix product Ty, = T3 'T T3, which is equivalent to
stripping the computed error two-ports 4 and B from the
through, expressions are obtained of the two nonzero
elements of T;,

1
T = e =g S aSos

: [SllASZZT - DET (ST) + (SllT - SllA)SzzB]

(5.45)
1

Lo = = g S oS

: {51 IB[SZZT DET (SA) - SzzA DET (Sr)]

+ [S117S224 — DET (S5,4)] DET (Sp)). (5.46)

These two expressions have been shown to be mutually
reciprocal under both solutions. Their ratio, however, ex-
pressed by

DET (Sg)
r1 SZZT - S R
0= =S - 47
e T 1185224 Svir—S220 (547)

assumes two mutually reciprocal values under the two
alternative TSD solutions so that its imaginary part may be
used as the required flag-function, signaling which of the two
solutions is physically meaningful. Indeed, if the electrical
length of the line L, is assumed to be always < 34 (it is a
“residual” length in real life!), then the imaginary part of ¢*”*
must always be positive.

It is impossible, on physical grounds, to separate S;,4
from S,,4 and S, from S, If, however, we accept the
arbitrary assumption

S124 _ Si2p _ Sior

(5.48)

S21A SZlB SZIT

separate values of the S;; (i # j) may be computed. Assump-
tion (5.48) forces the error two-ports 4 and B to share in
equal proportions the apparent nonreciprocity due to the
system errors.
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